
Journal Pre-proofs

RUN Beyond the Metaphor: An Efficient Optimization Algorithm Based on
Runge Kutta Method

Iman Ahmadianfar, Ali Asghar Heidari, Amir H. Gandomi, Xuefeng Chu,
Huiling Chen

PII: S0957-4174(21)00520-0
DOI: https://doi.org/10.1016/j.eswa.2021.115079
Reference: ESWA 115079

To appear in: Expert Systems with Applications

Received Date: 29 April 2020
Revised Date: 22 January 2021
Accepted Date: 17 April 2021

Please cite this article as: Ahmadianfar, I., Asghar Heidari, A., Gandomi, A.H., Chu, X., Chen, H., RUN Beyond
the Metaphor: An Efficient Optimization Algorithm Based on Runge Kutta Method, Expert Systems with
Applications (2021), doi: https://doi.org/10.1016/j.eswa.2021.115079

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover
page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version
will undergo additional copyediting, typesetting and review before it is published in its final form, but we are
providing this version to give early visibility of the article. Please note that, during the production process, errors
may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2021 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.eswa.2021.115079
https://doi.org/10.1016/j.eswa.2021.115079

1

RUN beyond the Metaphor:
An Efficient Optimization Algorithm Based on

Runge Kutta Method
Iman Ahmadianfara*, Ali Asghar Heidarib,c, Amir H. Gandomid , Xuefeng Chue, Huiling Chenf

a Department of Civil Engineering, Behbahan Khatam Alanbia University of Technology, Behbahan, Iran

Email: i.ahmadianfar@bkatu.ac.ir, im.ahmadian@gmail.com
b School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran 1439957131,

Iran.

Email: as_heidari@ut.ac.ir, aliasghar68@gmail.com
 c

Department of Computer Science, School of Computing, National University of Singapore, Singapore 117417,

Singapore

Email: aliasgha@comp.nus.edu.sg, t0917038@u.nus.edu
d University of Technology Sydney, Ultimo, NSW 2007, Australia.

Email: gandomi@uts.edu.au
e
 Department of Civil & Environmental Engineering, North Dakota State University, Department 2470, Fargo, ND,

USA.

Email: xuefeng.chu@ndsu.edu
f College of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, Zhejiang

325035, China

Email: chenhuiling.jlu@gmail.com

mailto:i.ahmadianfar@bkatu.ac.ir

2

Abstract

The optimization field suffers from the metaphor-based "pseudo-novel" or "fancy"

optimizers. Most of these cliché methods mimic animals' searching trends and possess

a small contribution to the optimization process itself. Most of these cliché methods

suffer from the locally efficient performance, biased verification methods on easy

problems, and high similarity between their components' interactions. This study

attempts to go beyond the traps of metaphors and introduce a novel metaphor-free

population-based optimization based on the mathematical foundations and ideas of the

Runge Kutta (RK) method widely well-known in mathematics. The proposed RUNge

Kutta optimizer (RUN) was developed to deal with various types of optimization

problems in the future. The RUN utilizes the logic of slope variations computed by the

RK method as a promising and logical searching mechanism for global optimization.

This search mechanism benefits from two active exploration and exploitation phases

for exploring the promising regions in the feature space and constructive movement

toward the global best solution. Furthermore, an enhanced solution quality (ESQ)

mechanism is employed to avoid the local optimal solutions and increase convergence

speed. The RUN algorithm's efficiency was evaluated by comparing with other

metaheuristic algorithms in 50 mathematical test functions and four real-world

engineering problems. The RUN provided very promising and competitive results,

showing superior exploration and exploitation tendencies, fast convergence rate, and

local optima avoidance. In optimizing the constrained engineering problems, the

metaphor-free RUN demonstrated its suitable performance as well. The authors invite

the community for extensive evaluations of this deep-rooted optimizer as a promising

tool for real-world optimization. The source codes, supplementary materials, and

guidance for the developed method will be publicly available at different hubs at and

http://imanahmadianfar.com, http://aliasgharheidari.com/RUN.html, and

http://mdm.wzu.edu.cn/RUN.html.

Keywords: Genetic algorithms; Evolutionary algorithm; Runge Kutta optimization;

Optimization; Swarm intelligence; Performance.

1. Introduction

Most real-world problems are complicated and present difficulties in being

optimized. These problems are often characterized by nonlinearity, multimodality, non-

differentiability, and high dimensionality. Because of these properties, the conventional

gradient-based optimization methods, such as quasi-Newton, conjugate gradient, and

sequential quadratic programming methods, are unable to optimize such problems

virtually (Nocedal & Wright, 2006; Wu, 2016). Therefore, existing literature suggests

that other optimization techniques need to be developed for more efficient and

http://imanahmadianfar.com/
http://aliasgharheidari.com/RUN.html
http://mdm.wzu.edu.cn/RUN.html

3

effective optimization. An optimization problem can be in many-objective forms (Cao,

Dong, et al., 2020; Cao, Wang, et al., 2020). One another problem can be multi-

objective (Cao, Zhao, Yang, et al., 2019), memetic (Fu, et al., 2020), fuzzy (Chen, Qiao,

et al., 2019), robust (Qu, et al., 2020), large scale (Cao, Fan, et al., 2020; Cao, Zhao, et

al., 2020), and single-objective. Real-world problems are faced every day, and we need

to develop solvers for deep learning applications (Chen, Chen, et al., 2020; Li, et al.,

2019; Qiu, et al., 2019), decision-making procedures (Liu, et al., 2016; Liu, et al.; Wu, et

al., 2020), optimal resource allocation (Yan, et al., 2020), image improvement

optimization (Wang, et al., 2020), deployment optimization in networks (Cao, Zhao,

Gu, et al., 2019), water-energy optimization (Chen, et al., 2017), training systems and

methods in artificial neural networks (Mousavi, et al., 2020), and optimization of the

parameters (Zhang, et al., 2006). Numerous metaheuristic optimization algorithms

(MOAs) have been developed and widely employed as suitable alternative optimizers to

solve various problems due to their flexibility and straightforward implementation

procedure (Chen, Fan, et al., 2020; Yang & Chen, 2019). MOAs can be categorized into

three groups (Kaveh & Bakhshpoori, 2016): evolutionary algorithms (EAs), physics-

based algorithms (PBAs), and swarm-based algorithms (SBAs). Nevertheless, they

present some drawbacks, including high sensitivity and their control parameter settings.

Also, they do not always converge toward the globally optimal solution (Wu, et al.,

2015). As they utilize some randomly generated components within the procedure (Sun,

et al., 2019), an appropriate balance between exploration and exploitation cannot be

ensured. This limit is one of the fundamental challenges within all kinds of methods in

this area.

The methods under the class of EAs are based on the principles of evolution in

nature, such as selection, recombination, and mutation. The genetic algorithm (GA),

another widely-used EA, was inspired by Darwin's theory of evolution (Holland, 1975).

Other EAs include genetic programming (GP) (Koza, 1994), differential evolution

(DE) (Storn & Price, 1995), and evolution strategy (Beyer & Schwefel, 2002). The

methods in this category have the deepest roots in their foundation theory compared to

other approaches, as Darwin's theory reshaped our vision of the tree of life. Later, the

development of physics-based algorithms (PBAs) emerged as a trend in the field

inspired by physics laws governing the surrounding world. For instance, among these

emerging PBA algorithms, simulated annealing (SA) is the most popular one

(Kirkpatrick, et al., 1983). Other PBAs include gravitational search algorithm (GSA)

(Rashedi, et al., 2009), central force optimization (Formato, 2007), differential search

(DS) (Liu, et al., 2015), vortex search algorithm (VSA) (Doğan & Ölmez, 2015), and

gradient-based optimizer (GBO) (Ahmadianfar, Bozorg-Haddad, et al., 2020).

Researchers tried to simulate organisms' cooperative behaviors in flocks after years

passed, which are natural or artificial (Baykasoğlu & Ozsoydan, 2017). For example, the

main inspiration in particle swarm optimization (PSO) (Eberhart & Kennedy, 1995) is a

flock of birds' social behaviors. Other SBA examples include the Bat algorithm (BA)

(Yang, 2010b), cuckoo search (CS) (Gandomi, et al., 2013), ant colony optimization

https://www.powerthesaurus.org/nevertheless/synonyms
https://en.wikipedia.org/wiki/Evolution_strategy

4

(ACO) (Dorigo & Di Caro, 1999), artificial bee colony (ABC) (Karaboga & Basturk,

2007), firefly algorithm (FA) (Yang, 2010a), slime mould algorithm (SMA)1 (Li, et al.,

2020), and Harris hawks optimization (HHO)2 (Heidari, Mirjalili, et al., 2019).

On the other hand, evolution served as the core idea of swarm-based methods

that evolved the algorithms themselves. Two large influences of these evolving and

algorithms included the searching trend for an "unused" biologic source of inspiration

and utilizing it as a dress for a set of equations. These unwanted ambiguous directions

first occurred when the black hole optimizer appeared as a modified PSO with a new

dress (Piotrowski, et al., 2014). Later, another issue was raised by a team of researchers

in China, who proved that the widespread grey wolf optimizer (GWO) has a defect,

and there is a problem in the verification process (Niu, et al., 2019). It is also exposed

that there is no novelty in GWO, and its structure resembled some variants of PSO

with a metaphor (Camacho Villalón, et al., 2020). This method's metaphor is not

implemented, as mentioned in the original work (Camacho Villalón, et al., 2020). Such

inaccuracy affects the reliability of methods and questions the validity of metaphor-

based methods like GWO and the black hole algorithm. Despite the weaknesses,

metaphors, and structural differences of various optimization algorithms (Tzanetos &

Dounias, 2020), they all employ two typical phases, exploration and exploitation, to

search the solution space regions (Salcedo-Sanz, 2016). Exploring is an optimization

algorithm's ability to sincerely search the entire solution space and explore the

promising areas. At the same time, exploitation is the capability of an optimization

algorithm to search around near-optimal solutions. Generally, the exploration phase of

an optimizer should randomly produce solutions in various regions of the solution

space during early iterations of the optimization process (Heidari, Aljarah, et al., 2019).

In contrast, the exploitation phase of an optimization algorithm should create a robust

local search. Thus, a well-designed idea should be able of creating a suitable balance

between the exploration and exploitation phases.

Generally, creating an appropriate trade-off between exploration and

exploitation is an essential task for any optimization algorithm (Ahmadianfar,

Kheyrandish, et al., 2020). In this regard, many researchers have attempted to improve

the optimizers' performance by selecting appropriate control parameters or hybridizing

with other optimizers (Abdel-Baset, et al., 2019; Ahmadianfar, et al., 2019; Luo, et al.,

2017; Zhang, et al., 2018). Nevertheless, creating a robust algorithm that can balance

exploration and exploitation is a complex and challenging issue. Moreover, as there are

many real-world problems, more accurate and more consistent optimizers are needed.

To fill such a gap, a well-designed population-based optimization procedure is

proposed in this research. The proposed algorithm, Runge Kutta optimizer (RUN), was

designed according to the foundations of the Runge Kutta method3 (Kutta, 1901;

1 https://aliasgharheidari.com/SMA.html
2 https://aliasgharheidari.com/HHO.html
3 For a better presentation of the term, we use the term Runge Kutta in this paper

5

Runge, 1895). RUN uses a specific slope calculation concept based on the Runge Kutta

method as an effective search engine for global optimization. The proposed algorithm

consists of two main parts: a search mechanism based on the Runge Kutta method and

an enhanced solution quality (ESQ) mechanism to increase solutions' quality. RUN's

performance was evaluated by using 50 mathematical test functions, and the results

were compared with those of other state-of-the-art optimizers. Furthermore, the

proposed RUN was employed to solve four engineering design problems to test its

ability and efficiency in solving a number of real-world optimization problems.

This paper is organized as follows. Section 2 presents a summarized review of

the Runge Kutta method. Section 3 provides the mathematical formulation and

optimization procedures of the RUN algorithm. Section 4 evaluates the efficiency of

the RUN to optimize different benchmark test functions. Section 5 assesses the ability

of the proposed RUN in solving engineering design problems. Section 6 presents the

main conclusions and some useful suggestions for future studies.

2. Related works

Generally, stochastic optimization algorithms can be categorized into two

classes: single-based and population-based algorithms. The algorithm begins the

optimization procedure with a single random position in the first class and updates it

during each iteration (Mirjalili, et al., 2016). Simulated annealing (SA) (Kirkpatrick, et

al., 1983), tabu search (TS) (Glover & Laguna, 1998), and hill-climbing (HC)

(Tsamardinos, et al., 2006) belong to this class. The primary benefits of the single-based

optimizers include easy implementation and a low number of function evaluations,

while their main drawback is the high possibility of getting caught up in local solutions.

In contrast, the population-based methods start the optimization procedure with a set

of random solutions and update their positions at each iteration. The well-known GA,

PSO, DE, ACO, ABC, and biogeography-based optimization (BBO) (Simon, 2008)

belong to this category. Population-based optimization algorithms also have a relatively

acceptable ability to avoid the local optimal solutions because they employ a set of

solutions at each iteration instead of only evolving on a single agent.

Accordingly, the population-based algorithms can handle the sceneries of

feature space and increase the convergence speed. Furthermore, they can share

information between solutions, making a more convenient search in complex and

challenging feature spaces (Mirjalili, et al., 2016). Notwithstanding these advantages,

these optimizers require many function evaluations during the optimization process and

a relatively complicated/difficult implementation. Another unavoidable issue is that

these methods apply a random-based vision for understanding the problem's

topographies, making them unbalanced, inaccurate, or unsuccessful in finding any best

solution. However, sometimes a locally-accurate solution can satisfy the practitioners

and requirements of real-world problems. Many studies indicate that the population-

based optimizers are regarded as more reliable and accurate than the single-based

6

algorithms because of the advantages mentioned above. Their applications in a broad

range of fields have demonstrated their worthiness and high capability. Generally, these

optimization algorithms have been largely inspired physics's laws, social behaviors of

creatures, and natural phenomena.

Of pertinent mention, a study by Sörensen on the low-quality contributions in

the optimization methods opened the eyes of many researchers (Sörensen, 2015). As

per this research, shallow mathematic models supplied with metaphor-based outfits

must be avoided to make improvements in the field (Lones, 2020). These metaphors

are often perplexing and irrelevant to experts, decision-makers, algorithm designers,

and those who utilize these methods for real-world cases. It has also been discovered

that some methods, such as popular harmony search, are not very original, in which the

core mathematic models are a version of (μ+1)-evolutionary search (Saka, et al., 2016).

Regardless of these shortcomings, optimization algorithms consist of exploration and

exploitation phases, as previously mentioned. Since establishing a reasonable balance

between these two phases is a challenge for any optimization technique, designing a

powerful and accurate optimization algorithm to achieve this goal is necessary. Hence, a

novel population-based metaheuristic optimization algorithm based on the Runge

Kutta method was developed in this study. The following two sections focus on the

formulation of this new RUN algorithm.

3. Overview of Runge Kutta method in differential equations

The Runge Kutta method (RKM) is broadly used to solve ordinary differential

equations (Kutta, 1901; Runge, 1895). RKM can be applied to create a high-precision

numerical method by using functions without requiring their high-order derivatives

(Zheng & Zhang, 2017). The primary formulation of the RKM is described as follows.

Consider the following first-order ordinary differential equation for an initial

value problem:

 (,), () (1)

In RKM, the main idea is to define (,) as the slope (S) of the best straight

line fitted to the graph at the point (,). Using the slope at point (,), another

point can be obtained by using the best fitted straight line: (,) (,

), where (,). Similarly, (,) (,). This

process can be repeated m times, which yields an approximate solution in the range of

[,].

The derivation of RKM is based on the Taylor series, which is given by:

 () () () ()
()

 (2)

https://www.sciencedirect.com/science/article/pii/S0747717103001135

7

By dropping the higher-order terms, the following approximate equation can be

obtained.

 () () () (3)

According to Eq. (3), the formula for the first-order Runge Kutta method (or

Euler method) can be expressed as:

 () ()

 (4)

where () (,); and - .

The first-order derivative (()) can be approximated by using the following

central differencing formula (Patil & Verma, 2006):

 ()
 () ()

(5)

Thus, the rule in Eq. (4) can be rewritten as:

 () ()
 () ()

(6)

In this study, the fourth-order Runge Kutta (RK4) (England, 1969) derived

from Eq. (2) was used to develop the proposed optimization method. The formula for

the RK4 method, which is based on the weighted average of four increments (as shown

in Fig. 1), can be expressed as:

 () ()

() (7)

in which the four weighted factors (k1, k2, k3, and k4) are respectively given by:

 () (,)

 (

,

)

 (

,

) (8)

 (,)

where is the first increment and determines the slope at the beginning of the interval

[,] using . is the second increment and specifies based on the slope at the

8

midpoint, using and ; is the third increment and defines regarding the slope at

the midpoint, using and ; and is the fourth increment and is determined based

on the slope at the end of the interval, using and . According to RK4, the next

value () is specified by the current value () plus the weighted average of

four increments.

Fig. 1. Slopes utilized in the RK method

4. Introduction to the Runge Kutta optimizer

In this study, a new swarm-based model with stochastic components is

developed for optimization purposes. This model eliminates the cliché inspiration

attachment with itself the proposed RUN method is represented by using a metaphor-

free language with emphasis on the mathematical core as some sets of activated rules at

the proper time. Using metaphors in a population-based model is rejected since the

only benefit of such a way is to hide the real nature of the equations utilized within the

optimizers. Therefore, RUN accounts for the main logic of the RK technique and the

population-based evolution of a crowd of agents. In fact, the RK uses a specific

formulation (i.e., RK4 method) to calculate the slope and solve the ordinary differential

equations (Kutta, 1901; Runge, 1895). RUN's main idea is based on the concept of the

proposed calculated slope in the RK method. The RUN uses the calculated slope as a

searching logic to explore the promising area in the search space and build a set of rules

for the evolution of a population set according to the swarm-based optimization

algorithm’s logic. The mathematical formulation of RUN is detailed in the following

subsections.

4.1. Initialization step

𝑥 𝑥
 𝑥

 𝑥 𝑥

𝑦

𝑦 (𝑥 𝑥)
𝑒𝑥𝑎𝑐𝑡

𝑘

𝑘
𝑘

𝑘

1

𝑦 (𝑥 𝑥)
𝑅𝑢𝑛𝑔𝑒 𝐾𝑢𝑡𝑡𝑎

error

(𝑘 𝑘 𝑘 𝑘)

9

In this step, the logic is to set an initial swarm to be evolved within the allowed

number of iterations. In RUN, N positions are randomly generated for a population

with a size of N. Each member of the population, (, , ,), is a solution

with a dimension of D for an optimization problem. In general, the initial positions are

randomly created by the following idea:

 , .() (9)

where and are the lower and upper bounds of the th variable of the problem

(, , ,), and is a random number in the range of [0, 1]. This rule simply

generates some solutions within limits.

4.2. Root of search mechanism

The power of any optimizer is dependent on its iterative cores for generating

the exploration and exploitation patterns. In the exploration core, an optimization

algorithm uses a set of random solutions with a high randomness rate to explore the

promising areas of the feasible space. Small and gradual variations in the exploitation of

core solutions and random behaviors are remarkably lower than those in the

exploration mechanism (Mirjalili, 2015a). In this study, RUN's leading search

mechanism is based on the RK method to search the decision space using a set of

random solutions and implement a proper global and local search.

The RK4 method was employed to determine the search mechanism in the

proposed RUN. The first-order derivative was utilized to define the coefficient ,

which is calculated by Eq. (5). Moreover, the proposed optimization algorithm uses

position instead of its fitness (()), because applying the objective function of a

position needs considerable time in computing. According to Eq. (5), and

 are two neighboring positions of . By considering () as a minimization

problem, positions and have best and worst positions, respectively.

Therefore, to create a population-based algorithm, position is equal to (i.e.,

 is the best position around), while the position is equal to w (i.e., w is

the worst position around). Therefore, is defined as:

w b
1

2

x x
k

x

 (10)

where w and are the worst and best solutions obtained at each iteration, which are

determined based on the three random solutions selected from the members of the

population (, ,), and 1 2 3 .

In order to enhance the exploration search and create a randomness behavior,

Eq. (10) can be rewritten as follows:

(w)

(10-1)

10

 () () (10-2)

where is a random number in the range of [0, 1]. Overall, the best solution ()

plays a crucial role in finding promising areas and moving toward the global best

solution. Therefore, in this study, a random parameter () is used to increase the

importance of the best solution () during the optimization process. In Eq. (10),

can be specified by:

 (11-1)

 .() / (11-2)

 (()) (

)

(11-3)

where is the position increment, which depends on parameter . is the step

size determined by the difference between and . Parameter is a scale factor

determined by the solution space's size, decreasing exponentially during the

optimization process. is the average all solutions at each iteration. Using the

random numbers () in Eqs. (11-1) to (11-3), the method can produce more

diversification trends and find various search space areas.

Accordingly, the three other coefficients (i.e., , , and) can be

respectively written as:

(.(w . .) (. . .)) (12)

(.(w . (

) .) (. . (

) .)) (13)

(.(w . .) (. . .)) (14)

where and are two random numbers in the range of [0, 1]. In this study,

 w and are determined by the following:

 () ()

(15)

where is the best random solution, which is selected from the three random

solutions (, , and). According to Eq. (15), if the fitness of the current

11

solution (()) is better than that of , the best and worst solutions (and) are

equal to and , respectively. Otherwise, they are equal to and , respectively.

Therefore, the leading search mechanism in RUN can be defined as:

() (16)

in which

 (16-1)

4.3. Updating solutions

The RUN algorithm begins the optimization process with a set of random

individuals (solutions). At each iteration, solutions update their positions using the RK

method. To do this, RUN uses a solution and the search mechanism obtained by the

RK method. Figure 2 depicts how a position updates its position by using the RK

method. In this study, to provide the global (exploration) and local (exploitation)

search, the following scheme is implemented to create the position at the next iteration:

in which

where is a random number, is a random number with a normal distribution.

k2

k3

k4

xn+1

xn

k1

Feasible space

Variable 1

V
a
ri

a
bl
e
 2

Fig. 2. Slopes employed by the RK to obtain the next position () in the RUN

algorithm

 .

(17)

 (exploration phase)

 ()

 (exploitation phase)
 ()

12

The formulas of and are expressed as

 .() (17-1)

 .() (17-2)

 and can be calculated as follows:

 () (17-3)

 () (17-4)

where is a random number in the range of (0,1). is the best-so-far solution.

 is the best position obtained at each iteration. is an adaptive factor, which is

given by:

 .(0.5) (17-5)

in which

 ((

)) (17-6)

where and are two constant numbers. is the number of iterations. is the

maximum number of iterations. In this study, was employed to provide a suitable

balance between exploration and exploitation. Based on Eq. (17-5), a large value of SF

is specified in the early iterations to increase the diversity and enhance the exploration

search; then, its value reduces to promote the exploitation search capability by

increasing the number of iterations. The main control parameters of RUN include two

parameters employed in the (), which are a and b.

The rule in Eq. (17) shows that the proposed RUN selects the exploration and

exploitation phases based on the condition < 0.5. This novel procedure used for

optimization in RUN ensures that if . , a global search is applied in the

solution space and a local search around solution is performed simultaneously. By

implementing a novel global search (exploration), the RUN can explore the search

space's superior promising regions. On the other hand, if . , RUN uses a

local search around solution . By applying this local search phase, the proposed

algorithm can effectively increase the convergence speed and focus on high-quality

solutions.

To perform the local search around the solutions and and explore the

promising regions in the search space, Eq. (17) is rewritten as follows:

13

where is an integer number, which is 1 or -1. This parameter changes the search

direction and increases diversity. is a random number in the range [0, 2]. According

to Eq. (18), the local search around decreases as the number of iterations increases.

Fig. 3 displays the search mechanism of RUN, indicating how to generate position

 at the next iteration.

k1

k3

k4

xc+1/6 (xRK)Δx

xc

Feasible space

Variable 1

V
ar

ia
bl
e

2

µ .(xm-xc)

xn+1

xm

k2

Fig. 3. Search mechanism of the RUN

4.4. Enhanced solution quality

In the RUN algorithm, enhanced solution quality (ESQ) is employed to

increase the quality of solutions and avoid local optima in each iteration. By applying

 .

(18)

 (exploration phase)

 ()

 (exploitation phase)

 ()

14

ESQ, the RUN algorithm ensures that each solution moves toward a better position. In

the proposed ESQ, the average of three random solutions () is calculated and

combined with the best position () to generate a new solution (). The following

scheme is executed to create the solution () by using the ESQ:

(19

)

 . . ()

 () . . (.)

in which

 (,). ((

))

(19-1)

 () (19-2)

where is a random number in the range of [0, 1]. is a random number, which is

equal to 5 in this study. is a random number, which decreases with the

increasing number of iterations. is an integer number, which is 1, 0, or -1. is the

best solution explored so far. According to the above scheme, for (i.e., the later

iterations), solution trends to create an exploitation search, while for (i.e.,

the early iterations), solution trends to make an exploration search. Note that in

the latter condition, to increase the diversity, parameter is defined. It is noteworthy

that ESQ is applied when the condition is met.

The solution calculated in this part () may not have better fitness than

that of the current solution (i.e., () ()). To have another chance for

creating a good solution, another new solution () is generated, which is defined as

follows:

if rand<

 (.) .(. (.)) (20)

end

where is a random number with a value of . In fact, the new solution

() is implemented when the condition rand< is met. The main objective of Eq.

(20) is to move the solution towards a better position. In the first rule of this

equation, a local search around is generated, and in the second rule, RUN

15

attempts to explore the promising regions with the movement towards the best

solution. Hence, to emphasize the importance of the best solution, coefficient is

used. It should be noted that to calculate , solutions and become and

 , respectively, because the fitness value of is less than that of

(() ()). The pseudo-code of and flowchart of RUN are presented in

Algorithm 1. and Fig. 4, respectively.

Algorithm 1. The pseudo-code of RUN

Stage 1. Initialization
Initialize ,

Generate the RUN population (, 2, ,)
Calculate the objective function of each member of population

Determine the solutions , , and
Stage 2. RUN operators
 for i= 1: Maxi
 for n = 1 : N
 for l = 1 : D

 Calculate position using Eq. 18

 end for
 Enhance the solution quality
 if .

 Calculate position using Eq. 19

 if () ()

 if rand<

 Calculate position using Eq. 20
 end
 end
 end

 Update positions and

 end for

 Update position
 i=i+1
 end

Stage 3. return

16

Fig. 4. Flowchart of the RUN algorithm

As shown in Fig. 5, three paths are considered for optimization in RUN. The

proposed algorithm first uses the RK search mechanism to generate position and

then employs the ESQ mechanism to explore the promising regions in the search

space. According to this mechanism, RUN follows three paths to reach a better

solution. In the first and second paths, position calculated by the ESQ is

compared with the position . If the fitness of is worse than that of

(i.e., () ()), another position () is generated. If ()

 (), the best solution is (second path). Otherwise, it is (first path). In

the third path, if () (), the best solution is .

The following characteristics theoretically demonstrate the proficiency of RUN

in solving various complex optimization problems:

 Scale factor () has a randomized adaptation nature, which assists RUN in

further improving the exploration and exploitation steps. This parameter

ensures a smooth transition from exploration to exploitation.

 Using the average position of solutions can promote RUN's exploration

tendency in the early iterations.

 RUN employs a search mechanism based on the RK method to boost both

exploration and exploitation abilities.

 The enhanced solution quality (ESQ) in the RUN algorithm utilizes the thus-far

best solution to promote the quality of solutions and improve the convergence

speed.

 In the RUN algorithm, it is possible that if the new solution is not in a better

position than the current solution, it can identify a new different position in the

search space to reach a better position. This process can enhance the quality of

solutions and improve the convergence rate.

 The search mechanism and ESQ use two randomized variables to emphasize

the importance of the best solution and move toward the global best solution,

which can effectively balance the exploration and exploitation steps.

17

Fig. 5. Optimization process in the RUN

4.5. Computational complexity

RUN algorithm mainly includes the following parts: initialization, getting the
maximum and minimum fitness, getting the minimum in three random individuals,
exploration of the search space, parameter updating, and fitness evaluation. Among

them, indicates the number of individuals in the population, is the problem's

dimension, and indicates the maximum number of iterations. The
computational complexity of initialization, fitness evaluation, parameter updating, and

exploration of the search space is (), getting the minimum in three random

individuals is () and the getting the maximum and minimum fitness is ().

From this, we can get the complexity of the whole algorithm: (
 ()).

5. Results and discussion

The new RUN algorithm's ability was verified using 20 benchmark functions,

which have been used by many researchers (Ahmadianfar, et al., 2019; Huang, et al.,

2019; Tian & Gao, 2017; Zhao, et al., 2019). The set of benchmark problems employed

in this study involves three families of mathematical functions: unimodal functions

(UFs) (f1-f6), multimodal functions (MFs) (f7-f14), and hybrid functions (HFs) (f15-f20) The

details on these test functions are shown in Tables 1-3.

18

Table 1. Unimodal test functions.

Function D Range fmin

 ()
 ∑

 30 [-100, 100] 0

 () ∑

 30 [-100, 100] 0

 () ∑

 (∑ .

)

 (∑ .

)

 30 [-100, 100] 0

 () ∑, (
) () -

 30 [-100, 100] 0

 ()
 ∑

 30 [-100, 100] 0

 () ∑()

 30 [-100, 100] 0

Table 2. Multimodal test functions.

Function D Range fmin

 () (,)+ (,) + + (,)+ (,)

 (,) .5+
(.√ / .5)

(. ())

30 [-100, 100] 0

 () () ∑ () ,
 ()- () ,

 ()-

where

30 [-100, 100] 0

 () . ∑ (),

 .209687462275036e+002

 ()

{

 (

)

 ((,)) .√ (,) /
()

((,)) .√ (,) /
()

30 [-100, 100] 0

 () (.2√

(∑

)) (

√∑ (

)) 30 [-32, 32] 0

 () ∑(∑ , (

(.5)))- ∑ , (.

 .5)

 . , 3,

30 [-100, 100] 0

19

 () ∑

 (. ∑

 ∑

) . 30 [-100, 100] 0

 ()

∑

 ∏ (

√

)

30 [-600, 600] 0

 ()

* () ∑(

) , ()- () +

 ∑ ()

30 [-50, 50] 0

Table 3. Hybrid benchmark functions

fmin Search space D Name Test function

1700 [-100, 100] 30 HF 1 (N=3) ()

1800 [-100, 100] 30 HF 2 (N=3) ()

1900 [-100, 100] 30 HF 3 (N=4) ()

2000 [-100, 100] 30 HF 4 (N=4) ()

2100 [-100, 100] 30 HF 5 (N=5) ()

2200 [-100, 100] 30 HF 6 (N=5) ()

The unimodal test functions with a global best position can evaluate different

optimization algorithms' exploitative behavior, while the multimodal test functions can

assess their exploration and local optima avoidance capabilities. It should be noted that

the hybrid test functions are more challenging and complicated than the unimodal and

multimodal test functions (Ahmadianfar, Bozorg-Haddad, et al., 2020). Therefore, they

are incredibly suitable to validate the optimizers' ability to solve complicated real-world

optimization problems. The proposed RUN results and efficiency were compared with

those of other well-known algorithms, including the GWO (Mirjalili, et al., 2014),

WOA(Mirjalili & Lewis, 2016), WCA (Eskandar, et al., 2012), IWO (Hosseini, 2007),

and CS (Yang & Deb, 2010) algorithms, based on the average and standard deviation of

the results. The GWO and IWO were included in the comparisons, as these widely-

used methods are two examples of the metaphor-based optimizers (Camacho Villalón,

et al., 2020). Six different test functions were selected to assess the effects of the RUN

algorithm qualitatively. Figure 6 depicts the qualitative results of test functions f1, f2,

f4, f7, f10, and f12. RUN was employed for minimizing these functions by using five

solutions over 200 iterations.

5.1. Experimental setup

20

The population size and the total number of iterations were set respectively

equal to 50 and 500 for the UFs and MFs and 50 and 1000 for the HFs. All results were

presented and compared in terms of the optimization algorithms' average efficiencies

over 30 independent runs. For GWO, WOA, CS, IWO, and WCA, the control

parameters were the same as those suggested in the original work. Table 4 lists the

parameters used in this study

Table 4. Parameter settings of optimization algorithms

Optimizers Parameters

RUN a = 20 and b = 12

GWO

WOA

CS Rate of discovery = 0.25

WCA
number of rivers + sea (Nsr) = 10

a controlling parameter (dmax) = 0.1

IWO

maximum number of seeds (Smax) = 15

minimum number of seeds (Smin) = 0

initial value of standard deviation = 5

final value of standard deviation = 0.01

5.2. Qualitative results of RUN

Three well-known qualitative metrics used to demonstrate RUN's performance

were search history, trajectory graph, and convergence curve. The search history graph

discloses the history of the RUN algorithm's positions during the optimization process.

The trajectory curve displays how the first dimension of a solution changed during the

iterations. The convergence curve demonstrates how the fitness value of the best

solution changed during the optimization process.

Figure 6 shows that RUN yielded a similar pattern to solve different problems

regarding the history of positions. This indicates that an attempt was made to initially

increase the exploration and find the promising regions of the search space and then

exploit the neighborhood of the best solutions. From the trajectory curves in Fig. 6, it

can be observed that RUN began the searching process with sudden fluctuations,

which involved about 100% of the search space. This behavior reveals the exploration

tendency of the RUN algorithm. As the number of iterations increased, the amplitude

of these variations reduced. This procedure ensured the transition of RUN from the

exploratory search towards exploitative trends. Therefore, it is concluded from the

trajectory graphs that the RUN algorithm first provided the exploration trend and then

shifted to the exploitation stage.

The convergence graph is usually employed to assess the convergence

performance of optimizers. Fig. 6 displays an accelerated reducing pattern in all

convergence curves, especially in the early iterations. It also shows the approximate

21

timing when RUN transferred from the exploration to the exploitation phase. These

results demonstrate the suitable accelerated convergence behavior of RUN.

5.3. Assessment of the exploitative behavior

Typically, UFs are used to test the exploitability of the optimization algorithms.

Since UFs (f1-f6) have only one global best solution, they can be used to evaluate the

exploitation ability of the optimization algorithms. Table 5 shows the results of the

RUN, GWO, WOA, CS, IWO, and WCA algorithms for the UFs, including the

average, best, and standard deviation values of the fitness function for 30 different

runs. The comparisons of RUN with the five other meta-heuristic optimization

algorithms demonstrated that RUN was the best optimizer to solve the UFs and

provide competitive results. Particularly, the proposed RUN algorithm exhibited an

excellent exploitation behavior.

5.4. Assessment of the exploratory behavior

The multimodal functions (f7-f14) were used to validate all optimizers'

exploratory behaviors since they had many local optimal solutions. Table 5 shows the

results of MFs obtained by the RUN, GWO, WOA, CS, IWO, and WCA algorithms,

indicating the superior performance of RUN to the other optimizers, except for f11. For

function f11, RUN was inferior to the WOA algorithm and superior to GWO and WCA.

The results presented in Table 5 for test functions f7-f14 demonstrate that RUN also has

a superior exploration ability due to the use of the exploration mechanism that ensures

the search process towards the global best solution.

5.5. Ability to avoid local optima

The RUN's ability to avoid the local optima was evaluated by using hybrid

functions (f15 - f20). These test functions are regarded as the most complicated

benchmark test functions, and only an optimizer with an appropriate balance between

global and local optima can avoid the local solutions. Table 6 presents the results of

RUN and the five other optimizers on the HFs.

For the results of the HFs in Table 6, it can be clearly observed that RUN was

the best optimizer among the six optimization algorithms on functions f15- f19 according

to their average fitness values. For function f20, RUN was surpassed by GWO but

superior to the WOA, CS, IWO, and WCA algorithms. Indeed, the proposed optimizer

was the second-best effective optimizer for this test functions. This capability is due to

the adaptive mechanism employed to update the parameter and the ESQ

mechanism in the proposed RUN, which assures a good transition from exploration to

exploitation.

22

 Search history 2D

Trajectory Convergence

Fig. 6. Qualitative results of six benchmark test functions

f2

f12

f4

f7

f10

f1

23

Table 5. Results of the UFs and MFs from RUN and five other meta-heuristic optimization algorithms

Optimizer
 UFs

f1 f2 f3 f4 f5 f6

RUN

Average 1.75E-132 6.68E-267 2.16E-129 2.45E+01 1.26E-137 2.35E-130

Best 5.31E-145 3.55E-278 1.81E-145 2.29E+01 6.74E-147 1.20E-145

SD 9.04E-132 0.00E+00 1.18E-128 1.04E+00 5.31E-137 1.29E-129

GWO

Average 3.87E-27 4.17E-97 5.78E-29 2.68E+01 5.60E-33 5.14E-30

Best 4.33E-29 2.8E-108 2.25E-31 2.52E+01 1.61E-34 1.12E-31

SD 7.73E-27 1.87E-96 1.48E-28 7.53E-01 5.84E-33 8.14E-30

CS

Average 2.52E-02 1.81E+01 9.00E-01 1.39E+02 5.16E-04 1.88E-01

Best 4.44E-05 1.46E-06 5.38E-03 2.96E+01 6.67E-06 1.22E-02

SD 1.17E-01 8.44E+01 1.70E+00 2.37E+02 7.63E-04 3.04E-01

WCA

Average 2.31E-05 6.77E-07 5.02E-09 7.38E+01 6.27E-07 2.86E+03

Best 2.22E-07 4.05E-25 1.11E-10 8.80E-01 3.13E-12 7.39E-08

SD 7.01E-05 3.70E-06 9.07E-09 6.54E+01 3.00E-06 7.78E+03

WOA

Average 6.75E-80 1.56E-110 5.52E+03 2.75E+01 2.86E-84 1.30E-81

Best 9.43E-89 9.17E-141 2.88E+01 2.69E+01 2.63E-94 2.90E-89

SD 2.45E-79 7.86E-110 3.85E+03 4.12E-01 1.11E-83 5.59E-81

IWO

Average 3.18E+03 1.53E+03 4.24E+02 4.10E+04 5.69E+04 5.01E+06

Best 8.84E+01 1.06E-05 6.12E-05 2.37E+01 4.21E+04 1.25E+06

SD 3.14E+03 1.96E+03 6.40E+02 9.02E+04 1.23E+04 2.57E+06

MFs

f7 f8 f9 f10 f11 f12 f13 f14

RUN
Average 0.00E+00 2.04E-01 3.82E-04 8.88E-16 1.04E-13 3.42E-01 0.00E+00 6.59E-08

Best 0.00E+00 4.21E-07 3.82E-04 8.88E-16 6.39E-14 2.33E-01 0.00E+00 3.33E-08

 SD 0.00E+00 1.13E-01 0.00E+00 0.00E+00 1.63E-14 7.53E-02 0.00E+00 1.95E-08

GWO
Average 5.91E+00 1.01E+00 3.82E-04 4.46E-14 2.91E+01 6.39E-01 6.13E-03 3.20E-02

Best 2.11E+00 6.36E-01 3.82E-04 3.64E-14 2.27E+01 4.41E-01 0.00E+00 6.40E-03

 SD 2.20E+00 1.59E-01 8.72E-13 4.19E-15 3.34E+00 9.60E-02 1.20E-02 2.33E-02

CS
Average 9.86E+00 2.41E+00 4.12E-04 3.73E-03 6.23E-02 5.93E-01 1.47E-02 1.69E-01

Best 7.74E+00 6.28E-01 3.82E-04 4.69E-04 8.53E-14 4.42E-01 4.35E-10 5.29E-08

 SD 8.36E-01 2.27E+00 4.54E-05 3.44E-03 9.52E-02 8.40E-02 1.80E-02 2.68E-01

WCA
Average 1.20E+01 2.92E+03 5.19E-03 3.40E+00 1.20E-01 5.30E-01 3.13E-02 3.64E-01

Best 1.03E+01 1.10E+03 3.82E-04 2.19E-02 8.53E-14 2.53E-01 5.08E-12 1.53E-12

 SD 6.12E-01 1.36E+03 2.63E-02 2.28E+00 5.12E-01 1.50E-01 3.86E-02 7.04E-01

WOA
Average 3.00E+00 5.12E-01 3.82E-04 3.73E-15 1.92E-14 5.24E-01 3.05E-03 1.03E-02

Best 0.00E+00 6.99E-02 3.82E-04 8.88E-16 7.11E-15 2.60E-01 0.00E+00 1.30E-03

 SD 4.43E+00 3.58E-01 5.55E-13 2.70E-15 6.62E-14 1.88E-01 1.67E-02 1.59E-02

IWO

Average 1.30E+01 4.59E+03 6.89E+02 1.24E+00 5.29E+00 3.58E-01 1.67E+02 1.27E-01

Best 1.21E+01 3.25E+03 3.90E-04 5.07E-03 3.00E+00 2.21E-01 9.25E+01 4.80E-02

SD 4.09E-01 6.11E+02 3.84E+02 4.71E+00 1.57E+00 8.82E-02 3.99E+01 8.93E-02

24

Table 6. Statistical results of the HFs from RUN and five other optimizers

Optimizer
HFs

f15 f16 f17 f18 f19 f20

RUN
Average 104191.21 3435.33 1919.53 3519.30 48127.89 2674.29

Best 26504.80 2149.82 1911.91 2345.66 10865.46 2229.29

 SD 42897.96 801.49 5.01 2215.65 22065.81 227.33

GWO
Average 2017606.11 9419404.67 1945.42 23438.34 865855.49 2581.81

Best 243778.74 4056.06 1912.26 11065.71 66706.84 2250.33

 SD 2197530.17 22146302.91 26.45 12065.16 1222558.84 145.41

CS
Average 1638591.37 8614.09 1931.73 94953.78 405641.76 3114.17

Best 168986.27 2070.91 1909.39 3577.19 16508.82 2364.87

 SD 1608329.34 8165.00 30.62 309592.19 577986.74 364.57

WCA
Average 1096464.13 5561515.91 1927.69 24082.37 339962.26 2832.20

Best 177033 2413.67 1910.27 5378.61 23640.99 2579.874

 SD 742290.81 30411215.42 29.31 15291.10 223453.44 136.44

WOA
Average 11178976.28 93612.11 1964.90 76381.26 3876550.62 3084.20

Best 2520022.97 9512.03 1919.07 28141.42 189834.25 2476.51

 SD 7349962.08 94864.91 34.80 48244.50 4182086.86 252.11

IWO
Average 110385.61 5178.86 1922.03 30483.82 53137.20 3263.82

Best 15620.9 2229.473 1907.79 3739.462 11885.51 2729.88

 SD 73296.20 3721.69 21.40 13771.33 31510.29 283.44

25

5.6. Assessment of the convergence ability

 Notwithstanding, the results presented in Tables 5-6 demonstrate the RUN

algorithm's superior efficiency compared with the other optimizers. However, the

convergence behavior analysis must also be performed to further assess the proposed

RUN 's performance in solving optimization problems. The convergence curves of

RUN, GWO, WOA, CS, IWO, and WCA are depicted in Fig. 7, revealing the

relationships of the best-so-far fitness value explored (y-axis) and the number of

functional evaluations (NFE) (x-axis).

According to the convergence curves (Fig. 7), the following conclusions can be

obtained:

Fig. 7. Convergence graphs of the RUN and five other optimizers for the selected UFs, MFs, and HFs

26

 Concerning the convergence rate, the IWO, WCA, and CS algorithms displayed

weak performances in optimizing the UFs and MFs, followed by the WOA and

GWO algorithms.

 The RUN optimizer had a faster convergence curve than the other algorithms

for the unimodal and multimodal test functions due to the proper balance

between exploration and exploitation.

 For the HFs, the convergence rate of RUN tended to be accelerated by

increasing the number of functional evaluations due to the ESQ and adaptive

mechanism, which helped it to explore the promising areas of the solution

space in the early iterations and more quickly converge towards the optimal

solution after spending about 15% of the total number of function evaluations.

 The convergence curves revealed that RUN did provide a more suitable

convergence speed to optimize the test functions than the other optimizers.

5.7. Ranking analysis

The Friedman and Quade tests (Derrac, et al., 2011) were conducted to

determine the six optimizers' influential performances. These tests employ a

nonparametric two-way analysis of variance, which allows the comparison of several

samples. Based on the Friedman test, all samples are equal in terms of importance. In

contrast, the Quade test considers the fact that some samples are more difficult or

complicated than others and, thus, provides a weighted ranking analysis of the samples

(Derrac, et al., 2011).

Tables 7 and 8 show the Friedman and Quade test ranks, including the

individual, average, and final ranks for the average fitness values from RUN and the

five other optimizers on all UF, MF, and HF test functions. The Friedman and Quade

test results indicated that the RUN algorithm performed the best among the six

algorithms on all test functions.

Table 7. Friedman ranks for the UFs, MFs, and HFs for RUN and five other optimizers

Optimizers
UFs Average

Rank
Rank

f1 f2 f3 f4 f5 f6

RUN 1 1 1 1 1 1 1.00 1

GWO 3 3 2 2 3 3 2.67 2

CS 5 6 4 6 5 4 5.00 5

WCA 4 4 5 4 4 5 4.33 4

WOA 2 2 6 3 2 2 2.83 3

IWO 6 5 3 5 6 6 5.17 6

MFs

f7 f8 f9 f10 f11 f12 f13 f14

RUN 1 1 2 1 2 1 1 1 1.25 1

GWO 3 3 2 3 6 6 3 3 3.63 4

CS 4 4 4 4 3 5 4 5 4.13 3

https://www.powerthesaurus.org/concerning/synonyms

27

WCA 5 5 5 6 4 4 5 6 5.00 5

WOA 2 2 2 2 1 3 2 2 2.00 2

IWO 6 6 6 5 5 2 6 4 5.00 5

HFs

f15 f16 f17 f18 f19 f20

RUN 1 1 1 1 1 2 1.17 1

GWO 5 6 5 3 5 1 4.17 4

CS 4 3 4 6 4 5 4.33 5

WCA 3 5 3 2 3 3 3.17 3

WOA 6 4 6 5 6 4 5.17 6

IWO 2 2 2 4 2 6 3.00 2

Table 8. Quade ranks for the UFs, MFs, and HFs for RUN and five other optimizers

Optimizers
UFs Average

Rank
Rank

f1 f2 f3 f4 f5 f6

RUN 5 1 2 6 3 4 1.00 1

GWO 10 2 8 12 4 6 2.67 2

CS 6 15 12 18 3 9 4.57 5

WCA 16 12 4 20 8 24 4.14 4

WOA 20 5 30 25 10 15 2.76 3

IWO 18 12 6 24 30 36 5.86 6

MFs

f7 f8 f9 f10 f11 f12 f13 f14

RUN 1.5 7 6 3 4 8 1.5 5 1.33 1

GWO 28 24 8 4 32 20 12 16 3.31 3

CS 24 21 3 6 12 18 9 15 3.94 4

WCA 35 40 5 30 15 25 10 20 4.97 5

WOA 16 12 6 2 4 14 8 10 1.89 2

IWO 30 48 42 18 24 12 36 6 5.56 6

HFs

f15 f16 f17 f18 f19 f20

RUN 6 3 1 4 5 2 1.10 1

GWO 25 30 5 15 20 10 4.57 5

CS 18 9 3 12 15 6 4.14 4

WCA 20 24 4 12 16 8 3.33 3

WOA 36 24 6 18 30 12 5.19 6

IWO 12 6 2 8 10 4 2.67 2

Table 9 displays the statistics and p-values of the Friedman and Quade tests for

all test functions. As per the p-values calculated for the two tests, significant differences

can be seen among all optimizers.

28

5.8. Comparison of RUN with advanced optimizers

In order to further evaluate the efficiency of RUN, it was compared with eight

advanced optimizers including CGSCA (Kumar, et al., 2017), SCADE (Nenavath &

Jatoth, 2018), BMWOA (Heidari, Aljarah, et al., 2019), BWOA (Chen, Xu, et al., 2019),

OBLGWO (Heidari, Abbaspour, et al., 2019), CAMES (Hansen, et al., 2003), GL25

(García-Martínez, et al., 2008), and CLPSO (Liang, et al., 2006) in solving the CEC-BC-

2017 benchmark functions. The population size, maximum number of iterations, and

dimension were set to 30, 500, and 30, respectively. All the optimization algorithms

were also performed in 30 different runs for each mathematical test function.

The best, average, and standard deviation of the results calculated by RUN and

the eight advanced optimizers are summarized in Table 10. As shown in Table 10,

RUN presented promising results on the CEC-BC-2017 functions compared with the

other optimizers. Moreover, the proposed RUN displayed the best performance in the

20 test functions (f2, f4, f5, f7, f8, f9, f10, f11, f13, f15-f24, and f26) and the second-best efficiency

in the remaining 10 test functions (f1, f3, f6, f12, f14, f25, and f27-f30). In this study, to

compute the average ranks of the optimization algorithms and specify their differences,

the Friedman test was performed. Table 11 displays the average ranks of all the

optimizers, where RUN achieved the best rank (1.33). Therefore, RUN had the best

efficiency compared with the eight advanced optimizers. To investigate the

convergence speed of RUN, the convergence curves were obtained for all the

optimizers on the CEC-BC-2017 functions (Fig. 8). It can be observed from Fig. 8 that

RUN achieved accurate solutions with a faster convergence rate than the eight

advanced optimizers.

Table 9. Statistic and p-value computed by the Friedman and Quade tests for the
UFs, MFs, and HFs

Average ranking

Quade Friedman

UFs

10.3445 24.7619 Statistic

1.83e-05 1.55e-04 p-value

MFs

12.9663 28.3333 Statistic

3.61E-07 3.13e-05 p-value

HFs

5.0844 16.6667 Statistic

2.40E-03 5.20E-03 p-value

29

Table 10. Statistical results of the RUN and eight advanced optimizers on CEC-BC-2017

 RUN CGSCA SCADE BMWOA BWOA OBLGWO CMAES GL25 CLPSO

f1
Best 1.44E+04 1.53E+10 1.87E+10 5.20E+08 1.94E+09 4.44E+07 1.04E+02 6.83E+09 7.65E+09

Average 3.75E+04 2.51E+10 2.97E+10 1.10E+09 5.58E+09 1.57E+08 5.45E+03 1.69E+10 1.16E+10
SD 1.40E+04 5.37E+09 4.86E+09 3.73E+08 2.05E+09 8.59E+07 5.75E+03 5.28E+09 2.59E+09

 Best 2.92E+14 9.54E+33 6.98E+34 6.58E+22 1.25E+27 2.68E+17 2.02E+10 2.93E+30 4.62E+32

f2 Average 4.17E+17 8.96E+38 1.13E+40 1.86E+30 4.23E+35 3.80E+22 2.59E+31 4.01E+38 1.29E+43

 SD 1.15E+18 2.88E+39 3.27E+40 1.01E+31 1.58E+36 9.92E+22 1.42E+32 1.32E+39 7.05E+43

f3
Best 3.59E+04 5.40E+04 5.72E+04 5.00E+04 5.78E+04 3.27E+04 1.23E+05 1.22E+05 1.09E+05

Average 5.05E+04 7.16E+04 7.68E+04 7.99E+04 7.51E+04 4.97E+04 1.94E+05 1.72E+05 1.56E+05
SD 8.29E+03 1.03E+04 7.59E+03 1.03E+04 7.58E+03 8.31E+03 5.92E+04 3.46E+04 2.38E+04

f4
Best 4.71E+02 1.45E+03 4.93E+03 6.09E+02 8.77E+02 5.19E+02 5.02E+02 1.58E+03 1.97E+03

Average 5.13E+02 3.57E+03 6.99E+03 7.31E+02 1.41E+03 5.57E+02 9.98E+02 3.22E+03 3.08E+03
SD 1.81E+01 9.87E+02 1.29E+03 1.11E+02 3.98E+02 3.05E+01 3.64E+02 1.07E+03 8.66E+02

f5
Best 5.92E+02 7.79E+02 8.19E+02 7.10E+02 7.23E+02 6.10E+02 5.79E+02 7.44E+02 7.54E+02

Average 6.53E+02 8.52E+02 8.74E+02 8.09E+02 8.20E+02 6.84E+02 1.22E+03 8.46E+02 8.08E+02
SD 2.91E+01 3.21E+01 2.41E+01 4.46E+01 3.44E+01 5.05E+01 1.92E+02 3.96E+01 2.60E+01

f6
Best 6.23E+02 6.54E+02 6.58E+02 6.53E+02 6.55E+02 6.07E+02 6.74E+02 6.44E+02 6.41E+02

Average 6.40E+02 6.70E+02 6.74E+02 6.68E+02 6.74E+02 6.25E+02 6.97E+02 6.66E+02 6.58E+02
SD 8.22E+00 7.50E+00 9.15E+00 8.50E+00 9.29E+00 1.28E+01 1.30E+01 9.60E+00 7.81E+00

f7
Best 8.02E+02 1.16E+03 1.17E+03 1.10E+03 1.10E+03 8.78E+02 7.71E+02 1.18E+03 1.13E+03

Average 9.36E+02 1.26E+03 1.26E+03 1.25E+03 1.30E+03 1.01E+03 4.29E+03 1.33E+03 1.23E+03
SD 5.73E+01 4.96E+01 5.32E+01 8.54E+01 7.04E+01 6.22E+01 1.19E+03 8.26E+01 4.37E+01

f8
Best 8.75E+02 1.07E+03 1.06E+03 9.74E+02 9.59E+02 8.99E+02 8.59E+02 1.07E+03 1.04E+03

Average 9.21E+02 1.11E+03 1.12E+03 1.03E+03 1.02E+03 9.61E+02 1.37E+03 1.12E+03 1.10E+03
SD 2.62E+01 1.99E+01 2.12E+01 2.46E+01 2.51E+01 4.16E+01 1.68E+02 2.65E+01 2.67E+01

f9
Best 2.09E+03 5.18E+03 7.68E+03 5.69E+03 6.20E+03 1.34E+03 1.00E+04 5.04E+03 5.13E+03

Average 3.52E+03 8.85E+03 1.06E+04 8.59E+03 7.51E+03 4.46E+03 1.50E+04 9.25E+03 1.14E+04
SD 8.96E+02 1.65E+03 1.05E+03 1.27E+03 1.11E+03 2.28E+03 2.48E+03 2.41E+03 2.35E+03

f10
Best 3.85E+03 7.34E+03 7.69E+03 6.28E+03 5.96E+03 4.44E+03 4.93E+03 8.60E+03 7.27E+03

Average 5.14E+03 8.92E+03 8.70E+03 7.80E+03 7.37E+03 6.96E+03 6.21E+03 9.51E+03 8.12E+03
SD 7.73E+02 3.96E+02 3.50E+02 5.80E+02 8.46E+02 1.44E+03 6.32E+02 5.11E+02 3.77E+02

f11
Best 1.19E+03 2.57E+03 3.56E+03 1.38E+03 2.27E+03 1.28E+03 1.35E+03 4.48E+03 3.24E+03

Average 1.26E+03 4.22E+03 5.28E+03 2.19E+03 3.82E+03 1.38E+03 1.91E+03 1.18E+04 6.44E+03
SD 3.23E+01 9.46E+02 1.11E+03 5.28E+02 9.31E+02 5.50E+01 9.17E+02 3.70E+03 2.16E+03

f12
Best 2.65E+06 8.42E+08 1.26E+09 2.31E+07 5.69E+07 5.42E+06 3.41E+05 3.42E+08 8.45E+08

Average 1.38E+07 2.67E+09 3.88E+09 1.44E+08 4.57E+08 4.21E+07 4.20E+06 1.16E+09 1.47E+09
SD 9.36E+06 1.02E+09 1.14E+09 7.19E+07 2.57E+08 3.56E+07 6.29E+06 6.36E+08 5.55E+08

f13
Best 1.23E+04 5.76E+08 5.87E+08 2.37E+05 1.68E+06 2.06E+05 1.98E+04 1.07E+07 1.64E+08

Average 2.63E+04 1.37E+09 1.51E+09 2.17E+06 1.30E+07 2.08E+06 1.63E+07 3.46E+08 9.58E+08
SD 1.45E+04 5.20E+08 6.76E+08 2.97E+06 1.02E+07 3.41E+06 3.52E+07 3.12E+08 4.91E+08

f14
Best 1.22E+04 1.44E+05 4.44E+05 6.09E+04 1.55E+05 7.65E+03 1.16E+04 9.30E+04 9.18E+03

Average 2.27E+05 1.04E+06 1.25E+06 1.13E+06 2.21E+06 2.57E+05 2.11E+05 2.31E+06 7.30E+05
SD 1.87E+05 7.10E+05 7.27E+05 9.47E+05 2.27E+06 2.61E+05 1.74E+05 1.78E+06 6.25E+05

f15
Best 7.28E+03 5.83E+06 6.36E+06 3.22E+04 3.87E+04 3.59E+04 2.71E+04 1.71E+05 2.51E+05

Average 1.42E+04 4.39E+07 2.91E+07 2.87E+05 6.37E+06 2.18E+05 2.52E+05 1.12E+07 7.93E+07
SD 3.59E+03 4.01E+07 2.41E+07 2.64E+05 7.07E+06 2.22E+05 3.27E+05 1.91E+07 5.37E+07

f16
Best 2.04E+03 3.93E+03 3.74E+03 2.70E+03 3.19E+03 2.14E+03 2.03E+03 3.95E+03 3.41E+03

Average 2.84E+03 4.44E+03 4.23E+03 3.59E+03 4.33E+03 2.97E+03 3.25E+03 4.49E+03 4.03E+03
SD 3.28E+02 2.10E+02 2.45E+02 4.91E+02 5.50E+02 3.48E+02 6.90E+02 2.90E+02 3.11E+02

f17
Best 1.83E+03 2.37E+03 2.29E+03 1.99E+03 2.24E+03 1.89E+03 1.79E+03 2.65E+03 2.40E+03

Average 2.24E+03 2.91E+03 2.84E+03 2.47E+03 2.71E+03 2.33E+03 2.35E+03 3.00E+03 2.80E+03
SD 2.22E+02 1.92E+02 1.61E+02 2.68E+02 3.23E+02 2.04E+02 3.89E+02 2.23E+02 2.05E+02

f18
Best 5.21E+04 3.98E+06 1.40E+06 4.82E+05 2.07E+05 1.49E+05 2.03E+05 5.71E+05 9.28E+05

Average 6.11E+05 1.53E+07 1.25E+07 5.32E+06 1.03E+07 3.17E+06 2.24E+06 2.52E+07 8.03E+06
SD 7.60E+05 7.94E+06 8.79E+06 5.31E+06 1.23E+07 2.56E+06 1.87E+06 1.52E+07 4.97E+06

f19
Best 1.53E+04 3.44E+07 1.28E+07 2.22E+05 4.04E+05 4.41E+04 2.97E+05 4.11E+05 2.52E+06

Average 4.43E+05 1.12E+08 7.79E+07 1.64E+06 1.21E+07 1.01E+06 1.24E+06 2.28E+07 9.84E+07
SD 3.45E+05 6.03E+07 5.14E+07 1.44E+06 1.41E+07 8.83E+05 1.00E+06 4.25E+07 8.57E+07

30

Table 10. Statistical results of the RUN and eight advanced optimizers on CEC-BC-2017 (Continued)

 RUN CGSCA SCADE BMWOA BWOA OBLGWO CMAES GL25 CLPSO

f20
Best 2.27E+03 2.71E+03 2.65E+03 2.40E+03 2.44E+03 2.27E+03 2.53E+03 2.96E+03 2.63E+03

Average 2.56E+03 2.95E+03 2.99E+03 2.76E+03 2.81E+03 2.62E+03 3.15E+03 3.26E+03 2.87E+03
SD 1.70E+02 1.36E+02 1.52E+02 1.85E+02 1.94E+02 1.86E+02 3.46E+02 1.64E+02 9.18E+01

f21
Best 2.40E+03 2.57E+03 2.57E+03 2.49E+03 2.56E+03 2.42E+03 2.33E+03 2.57E+03 2.53E+03

Average 2.44E+03 2.62E+03 2.62E+03 2.56E+03 2.64E+03 2.49E+03 2.59E+03 2.62E+03 2.60E+03
SD 2.52E+01 2.45E+01 2.80E+01 4.40E+01 5.41E+01 5.34E+01 2.67E+02 2.59E+01 2.39E+01

f22
Best 2.30E+03 4.08E+03 4.96E+03 2.55E+03 3.49E+03 2.33E+03 6.23E+03 3.31E+03 4.30E+03

Average 3.31E+03 5.39E+03 6.48E+03 5.68E+03 7.74E+03 3.33E+03 8.15E+03 5.31E+03 7.40E+03
SD 1.86E+03 1.23E+03 1.08E+03 3.15E+03 1.86E+03 1.97E+03 1.32E+03 2.11E+03 1.83E+03

f23
Best 2.74E+03 3.02E+03 3.01E+03 2.87E+03 2.95E+03 2.76E+03 2.94E+03 2.99E+03 2.96E+03

Average 2.80E+03 3.09E+03 3.09E+03 2.98E+03 3.19E+03 2.85E+03 4.22E+03 3.10E+03 3.09E+03
SD 2.95E+01 3.74E+01 4.62E+01 7.05E+01 1.16E+02 5.76E+01 5.82E+02 6.85E+01 4.95E+01

f24
Best 2.90E+03 3.19E+03 3.18E+03 3.04E+03 3.07E+03 2.94E+03 3.07E+03 3.12E+03 3.09E+03

Average 2.98E+03 3.25E+03 3.25E+03 3.13E+03 3.28E+03 2.99E+03 3.12E+03 3.24E+03 3.25E+03
SD 4.61E+01 4.25E+01 3.36E+01 6.49E+01 9.54E+01 3.23E+01 2.04E+01 6.14E+01 4.78E+01

f25
Best 2.89E+03 3.30E+03 3.35E+03 2.99E+03 3.10E+03 2.90E+03 2.88E+03 3.34E+03 3.44E+03

Average 2.93E+03 3.70E+03 3.81E+03 3.08E+03 3.20E+03 2.95E+03 2.89E+03 3.72E+03 3.77E+03
SD 2.67E+01 2.36E+02 2.47E+02 5.70E+01 7.47E+01 2.82E+01 6.37E+00 2.51E+02 2.22E+02

f26
Best 2.80E+03 6.36E+03 7.36E+03 3.74E+03 4.71E+03 3.56E+03 2.80E+03 7.35E+03 6.52E+03

Average 4.50E+03 8.02E+03 8.21E+03 6.82E+03 8.33E+03 5.73E+03 5.39E+03 8.47E+03 7.92E+03
SD 1.27E+03 5.81E+02 3.96E+02 1.22E+03 1.12E+03 7.41E+02 1.84E+03 5.37E+02 5.68E+02

f27
Best 3.25E+03 3.41E+03 3.39E+03 3.25E+03 3.33E+03 3.22E+03 3.35E+03 3.51E+03 3.43E+03

Average 3.31E+03 3.52E+03 3.57E+03 3.33E+03 3.47E+03 3.25E+03 3.51E+03 3.66E+03 3.58E+03
SD 3.57E+01 6.53E+01 8.54E+01 6.37E+01 1.52E+02 1.57E+01 3.47E+02 1.01E+02 7.67E+01

f28
Best 3.23E+03 4.08E+03 4.48E+03 3.39E+03 3.50E+03 3.27E+03 3.19E+03 3.95E+03 4.25E+03

Average 3.28E+03 4.76E+03 5.03E+03 3.50E+03 3.82E+03 3.35E+03 3.23E+03 4.88E+03 4.95E+03
SD 2.06E+01 4.47E+02 3.53E+02 7.26E+01 2.00E+02 3.69E+01 3.00E+01 4.09E+02 4.03E+02

f29
Best 3.69E+03 4.67E+03 5.18E+03 4.25E+03 4.31E+03 3.84E+03 3.42E+03 4.91E+03 4.54E+03

Average 4.24E+03 5.29E+03 5.67E+03 5.00E+03 5.45E+03 4.28E+03 3.76E+03 5.56E+03 5.13E+03
SD 2.74E+02 3.17E+02 3.15E+02 5.16E+02 6.21E+02 3.41E+02 2.50E+02 3.28E+02 3.12E+02

f30
Best 3.55E+05 6.81E+07 6.71E+07 1.00E+06 6.87E+06 7.09E+05 7.94E+05 1.76E+07 1.74E+07

Average 3.99E+06 2.19E+08 2.01E+08 8.83E+06 5.03E+07 6.50E+06 3.18E+06 5.03E+07 7.24E+07
SD 2.71E+06 8.81E+07 8.13E+07 4.83E+06 4.07E+07 4.35E+06 2.42E+06 3.73E+07 4.27E+07

31

5.9. Sensitivity analysis of RUN

Table 11 Average ranks of RUN and eight advanced optimizers

based on the Friedman test

Algorithm Friedman ranking Rank

RUN 1.33 1

CGSCA 6.53 7

SCADE 7.40 9

BMWOA 4.00 3

BWOA 5.70 5

OBLGWO 2.23 2

CMAES 4.43 4

GL25 7.17 8

CLPSO 6.20 6

32

Fig. 8. Convergence graphs of RUN and eight other algorithms for the selected CEC 2017

benchmark functions

33

The sensitivity analysis of the control parameters of RUN (i.e., a and b) was

performed, which demonstrated that RUN had a very low sensitivity to the parameter

changes. This research evaluated different combinations of the control parameters on

34 mathematical test functions for designing RUN, including two groups, 14 unimodal

and multimodal test functions (group 1) and 20 test functions of CEC-BC-2017 (group

2). In this regard, the values of each parameter were defined as a = [5, 10, 20,

30, 40] and b = [4, 8, 12, 16, 20]. Since each parameter had 5 values, there were 25

combinations of the design parameters. Each combination was evaluated by the

average fitness values obtained from 30 different runs. Fig. 9(a) illustrates the mean

rank values of the two groups, and Fig. 9(b) presents the average rank values of the two

groups. Accordingly, the best rank belongs to C13 (a = 20 and b = 12), and the rank of

C19 is very close to C13. Also, the ranks for most combinations are very close,

indicating that the proposed algorithm is not very sensitive to the parameter changes.

34

Fig. 9. Sensitivity analysis of RUN, (a) ranks of uni- and multi-modal test functions

and CEC-2017 (b) average ranks of all combinations

6. Engineering benchmark problems

Four engineering benchmark problems were selected in this study to evaluate

the performance of the proposed RUN algorithm. Solving such engineering design

problems by utilizing specific optimization algorithms is a suitable way to test their

capabilities (Heidari, Mirjalili, et al., 2019). The results obtained by RUN were

compared with those of different well-known optimizers suggested in previous studies.

It is worth noting that the population size and the maximum number of iterations were

30 and 500, respectively, for all problems.

35

6.1. Rolling element bearing design problem

The primary goal of this problem is to maximize the fatigue life, which is a

function of the dynamic load-carrying capacity. It has ten variables and nine constraints

for modeling and geometric-based limitations. The problem is described in detail by

Gupta et al. (2007). The problem is described in detail in (Gupta, et al., 2007). The

related mathematical formulation is detailed in Appendix A.

Fig. 10 displays the schematic view of the rolling element bearing design

problem.

Fig. 10. Rolling element bearing design problem

The results of RUN were compared with those of the GA (Gupta, et al., 2007),

teaching-learning-based optimization (TLBO) (Rao, et al., 2011), passing vehicle search

(PVS) (Savsani & Savsani, 2016), and HHO (Heidari, Mirjalili, et al., 2019) algorithms.

Table 12 presents the statistical results from RUN, GA, TLBO, PVS, and HHO

optimizers, indicating that RUN achieved the best fitness value with significant

progress. The optimal variables of the problem for the five optimizers are shown in

Table 13.

Table 12. Statistical results from RUN, TLBO, GA, PVS, and HHO for the rolling element
bearing design problem

 RUN GA (Gupta, et al.,

2007)
TLBO (Rao, et

al., 2011)
PVS (Savsani &

Savsani, 2016)

HHO (Heidari,

Mirjalili, et al.,
2019)

Best 83680.47 81843.30 81859.74 81859.59 83011.88

Mean 82025.24 NA* 81438.99 80803.57 NA

SD 977.95 NA NA NA NA

*NA: Not Available

𝐷ℎ
𝐵𝑤

D

𝑑

𝑑

𝑟
𝑟𝑖

36

6.2. Speed reducer design problem

 In this problem, the weight of speed reducer is maximized (Mezura-Montes &

Coello, 2005). The mathematical formulation of this problem is detailed in Appendix

A. The numbers of variables and constraints of this problem were 7 and 11,

respectively, and the schematic is depicted in Fig. 11.

Fig. 11. Speed reducer design problem

RUN's optimal results were compared with the CS results (Gandomi, et al.,

2013), HGSO (Hashim, et al., 2019), GWO, and WOA optimizers. Table 14 gives the

results of these optimization algorithms for this problem. It can be observed that RUN

achieved the best solution and outperformed the compared optimizers. In addition, the

optimal variables of the problem are tabulated in Table 15.

Table 13. Comparison of the results from RUN, TLBO, GA, PVS, and HHO for the rolling element
bearing design problem

Variables RUN TLBO (Rao, et al.,

2011)
GA (Gupta, et al.,

2007)
PVS (Savsani &

Savsani, 2016)

HHO
(Heidari,

Mirjalili, et al.,
2019)

 21.59796 21.42559 21.42300 21.42559 21.0000

 125.2142 125.7191 125.71710 125.71906 125.0000

 0.51500 0.51500 0.51500 0.51500 0.51500

 0.51500 0.51500 0.51500 0.51500 0.51500

 11.4024 11.0000 11.0000 11.0000 11.0920

 0.40059 0.42426 0.41590 0.40043 0.4000

 0.61467 0.63394 0.65100 0.68016 0.6000

 0.30530 0.30000 0.30004 0.30000 0.3000

 0.02000 0.06885 0.02230 0.07999 0.0504

 0.63665 0.79994 0.75100 0.70000 0.6000

𝑥 𝑥

𝑥

𝑥
𝑥 𝑥

𝑥

37

Table 15. Comparison of the results from RUN, CS, HGSO, GWO, and WOA
for the speed reducer design problem

Variables RKO CS (Gandomi,

et al., 2013)

HGSO
(Hashim, et al.,

2019)

GWO
(Hashim, et al.,

2019)

WOA
(Hashim, et

al., 2019)

 3.5001 3.5015 3.4970 3.5000 3.4210

 0.7000 0.7000 0.7100 0.7000 0.7000

 17.000 17.000 17.020 17.000 17.000

 7.0000 7.6050 7.6700 7.3000 7.3000

 7.8000 7.8181 7.8100 7.8000 7.8000

 3.3500 3.3520 3.3600 2.9000 2.9000

 5.2900 5.2875 5.2850 2.9000 5.0000

Fitness 2996.73 3000.98 2997.10 2998.83 2998.40

6.3. Three-bar truss problem

The objective of this problem is to minimize the weight of a three-bar truss

(Cheng & Prayogo, 2014; Gandomi, et al., 2013), which is one of the widely-used

engineering problems in previous studies. Fig. 12 displays this problem's shape, in

which the main variables include the areas of bars 1, 2, and 3. The mathematical

formulation (i.e., objective function and constraints) of the problem is detailed in

Appendix A.

Table 14. Statistical results from RUN, CS, HGSO, GWO, and WOA for the speed
reducer design problem

 RKO
CS (Gandomi,

et al., 2013)

HGSO
(Hashim, et al.,

2019)

GWO
(Hashim, et al.,

2019)

WOA
(Hashim, et al.,

2019)

Best 2996.348 NA 2996.4 2998.545 2998.134

Mean 2996.348 3007.2 2996.9 2998.832 2998.445

SD 7.63E-09 4.96E+00 4.39E-05 1.86E-06 1.94E-06

38

Fig. 12. Three-bar truss problem

The results of RUN were compared with those of MVO (Mirjalili, et al., 2016),

grasshopper optimization algorithm (GOA) (Mirjalili, et al., 2018), moth-flame

optimization (MFO) (Mirjalili, 2015b), mine blast algorithm (MBA) (Sadollah, et al.,

2013), CS (Gandomi, et al., 2013), and HHO (Heidari, Mirjalili, et al., 2019). Table 16

displays the results acquired from RUN and the six other optimizers, revealing that the

proposed RUN yielded better results than the other optimizers. Furthermore, the

optimized variables obtained by the seven optimization algorithms are shown in Table

17.

Table 16. Comparison of statistical results of RUN with literature for the three-bar truss
problem

 RUN
MVO (S.

Mirjalili, et
al., 2016)

GOA (S.

Z. Mirjalili,
et al., 2018)

MFO (S.

Mirjalili,
2015b)

MBA
(Sadollah,

Bahreininejad,
Eskandar, &
Hamdi, 2013)

CS
(Gandomi,
et al., 2013)

HHO
(Heidari,

Mirjalili, et
al., 2019)

Best 263.8958 263.8958 263.8958 263.8955 263.8958 263.9715 263.8958

Mean 263.89768 NA NA NA 263.897996 264.0669 NA

SD 2.30E-03 NA NA NA 3.93E-03 9.00E-05 NA

𝑙

2 3

4

A1=A3

P P

𝑥𝐴

𝑥𝐴

𝑥𝐴 𝑙

1

𝑙

39

Table 17. Best solutions achieved by the seven algorithms for the

three-bar truss problem

Algorithm

RKO 0.788679110 0.408237045

MVO (S. Mirjalili, et al., 2016) 0.78860276 0.408453070

GOA (S. Z. Mirjalili, et al.,

2018)
0.78889755 0.40761957

MFO (S. Mirjalili, 2015b) 0.78824477 0.40946690

MBA (Sadollah,

Bahreininejad, Eskandar, &

Hamdi, 2013)
0.7885650 0.4085597

CS (Gandomi, et al., 2013) 0.78867 0.40902

HHO (Heidari, Mirjalili, et al.,

2019)
0.7886628 0.4082313

40

6.4. Cantilever beam problem

Fig. 13 depicts the five-stepped cantilever beam problem, for which the main

variables are the height and width of the beam [63]. The main goal of the problem is to

minimize the beam weight. The main formulation of the problem is defined in

Appendix A.

Fig. 13. Cantilever beam problem

The RUN optimized the problem, and its results were compared with those of

CS (Gandomi, et al., 2013), method of moving asymptotes (MMA) (Chickermane &

Gea, 1996), generalized convex approximation (GCA I) (Chickermane & Gea, 1996),

GCA II (Chickermane & Gea, 1996), and SOS (Cheng & Prayogo, 2014). As shown in

Table 18, RUN provided more promising results than the five other optimizers, which

confirmed the RUN algorithm's high efficiency in approximating the global best

solution for this problem. Also, the optimal variables calculated by all the six optimizers

are listed in Table 19.

Table 18. Statistical results of RUN, CS, SOS, MMA, GCA I, and GCA II for the
cantilever beam problem

 RUN
CS

(Gandomi,
et al., 2013)

SOS
(Cheng &
Prayogo,

2014)

MMA
(Chickermane
& Gea, 1996)

GCA I
(Chickermane
& Gea, 1996)

GCA II
(Chickermane
& Gea, 1996)

Best 1.3399563 1.33999 1.33996 1.34000 1.34000 1.34000

Mean 1.3399604 NA 1.33997 NA NA NA

SD 4.68E-06 NA 1.10E-05 NA NA NA

1 2 3 4 5

41

7. Conclusions and future directions

In this study, a novel metaheuristic optimization algorithm, RUN was

developed to solve various optimization problems. The RUN algorithm was inspired by

the RK method used as a search engine to explore the best solution in the search space.

The RUN algorithm's search mechanism was formulated to effectively implement and

balance the exploration and exploitation phases. Also, the enhanced solution quality

(ESQ) was proposed and incorporated into RUN to improve the quality of solutions,

escape from local optima, and increase the convergence speed. 20 test functions,

including unimodal, multimodal, and hybrid, were utilized to assess the efficiency of the

RUN algorithm.

The RUN's superior efficiency on the unimodal and multimodal test functions

demonstrated its excellent exploitation and exploration abilities, which can be

attributed to utilizing the local and global terms in the RUN search mechanism and the

ESQ operator. Moreover, the optimal results for the hybrid and composite test

functions showed that RUN effectively facilitated the transition from global search (i.e.,

exploration) to local search (i.e., exploitation) by utilizing the adaptive parameters. The

results from this study indicated that RUN was able to explore wondrous solutions

compared with other state-of-the-art optimizers.

To evaluate the efficiencies of the RUN algorithm, comparisons were made

with five other optimizers (i.e., GWO, WOA, CS, WCA, and IWO) using two well-

Table 19. Optimal variables obtained by the RUN, CS, SOS, MMA, GCA

I, and GCA II algorithms for the cantilever beam problem

Algorithm

RKO 6.0049 5.3190 4.4868 3.5033 2.1595

CS (Gandomi, et

al., 2013)
6.0089 5.3049 4.5023 3.5077 2.1504

SOS (Cheng &

Prayogo, 2014)
6.0187 5.3034 4.4958 3.4989 2.1556

MMA
(Chickermane &

Gea, 1996)
6.0100 5.3000 4.4900 3.4900 2.1500

GCA I
(Chickermane &

Gea, 1996)
6.0100 5.3040 4.4900 3.4980 2.1500

GCA II
(Chickermane &

Gea, 1996)
6.0100 5.3000 4.4900 3.4900 2.1500

42

known ranking tests (i.e., the Friedman and Quade tests). The findings revealed that

RUN provided very competitive results and outperformed the other optimizers for

most test functions.

In addition, the efficiency of RUN algorithm was assessed by utilizing the

CEC2017 test functions and was compared with eight advanced algorithms. The results

demonstrate that RUN can guarantee the efficiency of global search while obtaining

superior local search, thus retaining an excellent balance between local and global

search capabilities, which indicates the superior efficiency of the proposed optimizer in

comparison with the advanced optimizers. Moreover, RUN was compared with other

existing optimizers in solving four engineering design problems, showing that RUN

presented a better performance in optimizing these complex real-world problems than

the other optimization algorithms.

This study was intended to develop a new optimizer (i.e., RUN) to be

implemented and formulated with specific exploration and exploitation strategies.

Despite the promising findings, it is recommended for future studies to use other well-

known operators, such as the crossover operator, mutation operator, opposite-based

learning method, and levy walks (LWs). A chaotic map (CMs) should also be

considered when the EQS is used in each iteration. In addition, further improvement

can be made by developing the multiobjective and binary versions of RUN for solving

multiobjective and discrete optimization problems. Finally, other RK methods, such as

the fourth-order RK contraharmonic mean method, can be considered in the RUN

algorithm to enhance its efficiency.

43

Appendix A

I- Rolling element bearing design problem

 {

 . .

 .
 .

Subject to:

 (⃗)

 (

)
 ,

 (⃗) () ,

 (⃗) () ,

 (⃗) ,

 (⃗) . () ,

 (⃗) (.) () ,

 (⃗) . () ,

 (⃗) . ,

 (⃗) . ,

in which

 . [(. (

)
 .

(
 ()

 ()
)

 .

)

]

 .

 [
 . () .

()

]

 [

]
 .

 [{
()

 (

)}

 {

 }

 {

}

]

 {
()

 (

)} {

 }

 (

)

 , , , .033

,

,

,

 .15() .45(), , .515 , .60

44

 .4 .5, .6 .7, .3 .4, .02 .1

 .6 .85

II- Speed reducer problem

 .
 (.3333

 .9334 .0934) .508 (

)

 .4777 (

) . (

)

Subject to

 ()

(
)

 ()
 .

(

)

 ()
 .

(
)

 ()
 .

(
)

 ()

(
)

 √(

) .9

 ()

(
)

 √(

) .5

 ()

 ()

 ()

 ()
 .5 .9

 ()
 .1 .9

III- Three-bar truss problem

Minimize (⃗) (√) ,

Subject to: (⃗)
√

√

 ,

 (⃗)

√

 ,

45

 (⃗)

√
 ,

 , , ,

 ,

IV- Cantilever beam problem

 . ()

Subject to:

 ()

 Variable ranges

 .0 , , , ,

References

Abdel-Baset, M., Zhou, Y., & Hezam, I. (2019). Use of a sine cosine algorithm combined with
Simpson method for numerical integration. International Journal of Mathematics in
Operational Research, 14, 307-318.

Ahmadianfar, I., Bozorg-Haddad, O., & Chu, X. (2020). Gradient-based optimizer: A new
Metaheuristic optimization algorithm. Information Sciences, 540, 131-159.

Ahmadianfar, I., Khajeh, Z., Asghari-Pari, S.-A., & Chu, X. (2019). Developing optimal policies
for reservoir systems using a multi-strategy optimization algorithm. Applied Soft
Computing, 80, 888-903.

Ahmadianfar, I., Kheyrandish, A., Jamei, M., & Gharabaghi, B. (2020). Optimizing operating
rules for multi-reservoir hydropower generation systems: An adaptive hybrid
differential evolution algorithm. Renewable Energy.

Baykasoğlu, A., & Ozsoydan, F. B. (2017). Evolutionary and population-based methods versus
constructive search strategies in dynamic combinatorial optimization. Information
Sciences, 420, 159-183.

Beyer, H.-G., & Schwefel, H.-P. (2002). Evolution strategies–A comprehensive introduction.
Natural computing, 1, 3-52.

Camacho Villalón, C. L., Stützle, T., & Dorigo, M. (2020). Grey Wolf, Firefly and Bat
Algorithms: Three Widespread Algorithms that Do Not Contain Any Novelty. In M.
Dorigo, T. Stützle, M. J. Blesa, C. Blum, H. Hamann, M. K. Heinrich & V. Strobel
(Eds.), Swarm Intelligence (pp. 121-133). Cham: Springer International Publishing.

Cao, B., Dong, W., Lv, Z., Gu, Y., Singh, S., & Kumar, P. (2020). Hybrid Microgrid Many-
Objective Sizing Optimization with Fuzzy Decision. IEEE Transactions on Fuzzy
Systems.

Cao, B., Fan, S., Zhao, J., Yang, P., Muhammad, K., & Tanveer, M. (2020). Quantum-enhanced
multiobjective large-scale optimization via parallelism. Swarm and Evolutionary
Computation, 57, 100697.

Cao, B., Wang, X., Zhang, W., Song, H., & Lv, Z. (2020). A Many-Objective Optimization
Model of Industrial Internet of Things Based on Private Blockchain. IEEE Network,
34, 78-83.

Cao, B., Zhao, J., Gu, Y., Fan, S., & Yang, P. (2019). Security-aware industrial wireless sensor
network deployment optimization. IEEE Transactions on Industrial Informatics, 16, 5309-
5316.

46

Cao, B., Zhao, J., Gu, Y., Ling, Y., & Ma, X. (2020). Applying graph-based differential grouping
for multiobjective large-scale optimization. Swarm and Evolutionary Computation, 53,
100626.

Cao, B., Zhao, J., Yang, P., Gu, Y., Muhammad, K., Rodrigues, J. J., & de Albuquerque, V. H.
C. (2019). Multiobjective 3-D Topology Optimization of Next-Generation Wireless
Data Center Network. IEEE Transactions on Industrial Informatics, 16, 3597-3605.

Chen, H., Chen, A., Xu, L., Xie, H., Qiao, H., Lin, Q., & Cai, K. (2020). A deep learning CNN
architecture applied in smart near-infrared analysis of water pollution for agricultural
irrigation resources. Agricultural Water Management, 240, 106303.

Chen, H., Fan, D. L., Fang, L., Huang, W., Huang, J., Cao, C., Yang, L., He, Y., & Zeng, L.
(2020). Particle swarm optimization algorithm with mutation operator for particle filter
noise reduction in mechanical fault diagnosis. International Journal of Pattern Recognition
and Artificial Intelligence, 2058012.

Chen, H., Qiao, H., Xu, L., Feng, Q., & Cai, K. (2019). A Fuzzy Optimization Strategy for the
Implementation of RBF LSSVR Model in Vis–NIR Analysis of Pomelo Maturity.
IEEE Transactions on Industrial Informatics, 15, 5971-5979.

Chen, H., Xu, Y., Wang, M., & Zhao, X. (2019). A balanced whale optimization algorithm for
constrained engineering design problems. Applied Mathematical Modelling, 71, 45-59.

Chen, Y., He, L., Guan, Y., Lu, H., & Li, J. (2017). Life cycle assessment of greenhouse gas
emissions and water-energy optimization for shale gas supply chain planning based on
multi-level approach: Case study in Barnett, Marcellus, Fayetteville, and Haynesville
shales. Energy Conversion and Management, 134, 382-398.

Cheng, M.-Y., & Prayogo, D. (2014). Symbiotic organisms search: a new metaheuristic
optimization algorithm. Computers & Structures, 139, 98-112.

Chickermane, H., & Gea, H. (1996). Structural optimization using a new local approximation
method. International Journal for Numerical Methods in Engineering, 39, 829-846.

Derrac, J., García, S., Molina, D., & Herrera, F. (2011). A practical tutorial on the use of
nonparametric statistical tests as a methodology for comparing evolutionary and swarm
intelligence algorithms. Swarm and Evolutionary Computation, 1, 3-18.

Doğan, B., & Ölmez, T. (2015). A new metaheuristic for numerical function optimization:
Vortex Search algorithm. Information Sciences, 293, 125-145.

Dorigo, M., & Di Caro, G. (1999). Ant colony optimization: a new meta-heuristic. In Proceedings
of the 1999 congress on evolutionary computation-CEC99 (Cat. No. 99TH8406) (Vol. 2, pp.
1470-1477): IEEE.

Eberhart, R. C., & Kennedy, J. (1995). A new optimizer using particle swarm theory. In
Proceedings of the sixth international symposium on micro machine and human science (Vol. 1, pp.
39-43): New York, NY.

England, R. (1969). Error estimates for Runge-Kutta type solutions to systems of ordinary
differential equations. The computer journal, 12, 166-170.

Eskandar, H., Sadollah, A., Bahreininejad, A., & Hamdi, M. (2012). Water cycle algorithm–A
novel metaheuristic optimization method for solving constrained engineering
optimization problems. Computers & Structures, 110, 151-166.

Formato, R. A. (2007). Central force optimization. Prog Electromagn Res, 77, 425-491.
Fu, X., Pace, P., Aloi, G., Yang, L., & Fortino, G. (2020). Topology Optimization Against

Cascading Failures on Wireless Sensor Networks Using a Memetic Algorithm. Computer
Networks, 107327.

Gandomi, A. H., Yang, X.-S., & Alavi, A. H. (2013). Cuckoo search algorithm: a metaheuristic
approach to solve structural optimization problems. Engineering with computers, 29, 17-35.

García-Martínez, C., Lozano, M., Herrera, F., Molina, D., & Sánchez, A. M. (2008). Global and
local real-coded genetic algorithms based on parent-centric crossover operators.
European Journal of Operational Research, 185, 1088-1113.

Glover, F., & Laguna, M. (1998). Tabu search. In Handbook of combinatorial optimization (pp.
2093-2229): Springer.

47

Gupta, S., Tiwari, R., & Nair, S. B. (2007). Multi-objective design optimisation of rolling
bearings using genetic algorithms. Mechanism and Machine Theory, 42, 1418-1443.

Hansen, N., Müller, S. D., & Koumoutsakos, P. (2003). Reducing the time complexity of the
derandomized evolution strategy with covariance matrix adaptation (CMA-ES).
Evolutionary computation, 11, 1-18.

Hashim, F. A., Houssein, E. H., Mabrouk, M. S., Al-Atabany, W., & Mirjalili, S. (2019). Henry
gas solubility optimization: A novel physics-based algorithm. Future Generation Computer
Systems, 101, 646-667.

Heidari, A. A., Abbaspour, R. A., & Chen, H. (2019). Efficient boosted grey wolf optimizers
for global search and kernel extreme learning machine training. Applied Soft Computing,
81, 105521.

Heidari, A. A., Aljarah, I., Faris, H., Chen, H., Luo, J., & Mirjalili, S. (2019). An enhanced
associative learning-based exploratory whale optimizer for global optimization. Neural
Computing and Applications, 1-27.

Heidari, A. A., Mirjalili, S., Faris, H., Aljarah, I., Mafarja, M., & Chen, H. (2019). Harris hawks
optimization: Algorithm and applications. Future Generation Computer Systems, 97, 849-
872.

Holland, J. H. (1975). Adaptation in natural and artificial systems: an introductory analysis with
applications to biology, control, and artificial intelligence: U Michigan Press.

Hosseini, H. S. (2007). Problem solving by intelligent water drops. In 2007 IEEE congress on
evolutionary computation (pp. 3226-3231): IEEE.

Huang, Q., Zhang, K., Song, J., Zhang, Y., & Shi, J. (2019). Adaptive differential evolution with
a Lagrange interpolation argument algorithm. Information Sciences, 472, 180-202.

Karaboga, D., & Basturk, B. (2007). A powerful and efficient algorithm for numerical function
optimization: artificial bee colony (ABC) algorithm. Journal of global optimization, 39, 459-
471.

Kaveh, A., & Bakhshpoori, T. (2016). Water evaporation optimization: a novel physically
inspired optimization algorithm. Computers & Structures, 167, 69-85.

Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing.
science, 220, 671-680.

Koza, J. R. (1994). Genetic programming II: Automatic discovery of reusable subprograms.
Cambridge, MA, USA, 13, 32.

Kumar, N., Hussain, I., Singh, B., & Panigrahi, B. K. (2017). Single sensor-based MPPT of
partially shaded PV system for battery charging by using cauchy and gaussian sine
cosine optimization. IEEE Transactions on Energy Conversion, 32, 983-992.

Kutta, W. (1901). Beitrag zur naherungsweisen integration totaler differentialgleichungen. Z.
Math. Phys., 46, 435-453.

Li, S., Chen, H., Wang, M., Heidari, A. A., & Mirjalili, S. (2020). Slime mould algorithm: A new
method for stochastic optimization. Future Generation Computer Systems, 111, 300-323.

Li, T., Xu, M., Zhu, C., Yang, R., Wang, Z., & Guan, Z. (2019). A deep learning approach for
multi-frame in-loop filter of HEVC. IEEE Transactions on Image Processing, 28, 5663-
5678.

Liang, J. J., Qin, A. K., Suganthan, P. N., & Baskar, S. (2006). Comprehensive learning particle
swarm optimizer for global optimization of multimodal functions. IEEE Transactions on
Evolutionary Computation, 10, 281-295.

Liu, J., Wu, C., Wu, G., & Wang, X. (2015). A novel differential search algorithm and
applications for structure design. Applied Mathematics and Computation, 268, 246-269.

Liu, S., Chan, F. T., & Ran, W. (2016). Decision making for the selection of cloud vendor: An
improved approach under group decision-making with integrated weights and
objective/subjective attributes. Expert Systems with Applications, 55, 37-47.

Liu, S., Yu, W., Chan, F. T. S., & Niu, B. A variable weight-based hybrid approach for multi-
attribute group decision making under interval-valued intuitionistic fuzzy sets.
International Journal of Intelligent Systems, n/a.

48

Lones, M. A. (2020). Mitigating metaphors: A comprehensible guide to recent nature-inspired
algorithms. SN Computer Science, 1, 49.

Luo, Q., Zhang, S., & Zhou, Y. (2017). Stochastic Fractal Search Algorithm for Template
Matching with Lateral Inhibition. Scientific Programming, 2017.

Mezura-Montes, E., & Coello, C. A. C. (2005). Useful infeasible solutions in engineering
optimization with evolutionary algorithms. In Mexican International Conference on Artificial
Intelligence (pp. 652-662): Springer.

Mirjalili, S. (2015a). The ant lion optimizer. Advances in Engineering Software, 83, 80-98.
Mirjalili, S. (2015b). Moth-flame optimization algorithm: A novel nature-inspired heuristic

paradigm. Knowledge-Based Systems, 89, 228-249.
Mirjalili, S., & Lewis, A. (2016). The whale optimization algorithm. Advances in engineering software,

95, 51-67.
Mirjalili, S., Mirjalili, S. M., & Hatamlou, A. (2016). Multi-verse optimizer: a nature-inspired

algorithm for global optimization. Neural Computing and Applications, 27, 495-513.
Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey wolf optimizer. Advances in engineering

software, 69, 46-61.
Mirjalili, S. Z., Mirjalili, S., Saremi, S., Faris, H., & Aljarah, I. (2018). Grasshopper optimization

algorithm for multi-objective optimization problems. Applied Intelligence, 48, 805-820.
Mousavi, A. A., Zhang, C., Masri, S. F., & Gholipour, G. (2020). Structural Damage

Localization and Quantification Based on a CEEMDAN Hilbert Transform Neural
Network Approach: A Model Steel Truss Bridge Case Study. Sensors, 20, 1271.

Nenavath, H., & Jatoth, R. K. (2018). Hybridizing sine cosine algorithm with differential
evolution for global optimization and object tracking. Applied Soft Computing, 62, 1019-
1043.

Niu, P., Niu, S., & Chang, L. (2019). The defect of the Grey Wolf optimization algorithm and
its verification method. Knowledge-Based Systems, 171, 37-43.

Nocedal, J., & Wright, S. (2006). Numerical optimization: Springer Science & Business Media.
Patil, P., & Verma, U. (2006). Numerical Computational Methods. Alpha Science International

Ltd. In: Oxford UK.
Piotrowski, A. P., Napiorkowski, J. J., & Rowinski, P. M. (2014). How novel is the ―novel‖

black hole optimization approach? Information Sciences, 267, 191-200.
Qiu, T., Shi, X., Wang, J., Li, Y., Qu, S., Cheng, Q., Cui, T., & Sui, S. (2019). Deep learning: A

rapid and efficient route to automatic metasurface design. Advanced Science, 6, 1900128.
Qu, S., Han, Y., Wu, Z., & Raza, H. (2020). Consensus Modeling with Asymmetric Cost Based

on Data-Driven Robust Optimization. Group Decision and Negotiation, 1-38.
Rao, R. V., Savsani, V. J., & Vakharia, D. (2011). Teaching–learning-based optimization: a

novel method for constrained mechanical design optimization problems. Computer-
Aided Design, 43, 303-315.

Rashedi, E., Nezamabadi-Pour, H., & Saryazdi, S. (2009). GSA: a gravitational search
algorithm. Information Sciences, 179, 2232-2248.

Runge, C. (1895). Über die numerische Auflösung von Differentialgleichungen. Mathematische
Annalen, 46, 167-178.

Sadollah, A., Bahreininejad, A., Eskandar, H., & Hamdi, M. (2013). Mine blast algorithm: A
new population based algorithm for solving constrained engineering optimization
problems. Applied Soft Computing, 13, 2592-2612.

Saka, M. P., Hasançebi, O., & Geem, Z. W. (2016). Metaheuristics in structural optimization
and discussions on harmony search algorithm. Swarm and Evolutionary Computation, 28,
88-97.

Salcedo-Sanz, S. (2016). Modern meta-heuristics based on nonlinear physics processes: A
review of models and design procedures. Physics Reports, 655, 1-70.

Savsani, P., & Savsani, V. (2016). Passing vehicle search (PVS): A novel metaheuristic
algorithm. Applied Mathematical Modelling, 40, 3951-3978.

49

Simon, D. (2008). Biogeography-based optimization. IEEE Transactions on Evolutionary
Computation, 12, 702-713.

Sörensen, K. (2015). Metaheuristics—the metaphor exposed. International Transactions in
Operational Research, 22, 3-18.

Storn, R., & Price, K. (1995). Differential evolution-a simple and efficient adaptive scheme for global
optimization over continuous spaces (Vol. 3): ICSI Berkeley.

Sun, G., Yang, B., Yang, Z., & Xu, G. (2019). An adaptive differential evolution with combined
strategy for global numerical optimization. Soft Computing, 1-20.

Tian, M., & Gao, X. (2017). An improved differential evolution with information intercrossing
and sharing mechanism for numerical optimization. Swarm and Evolutionary Computation.

Tsamardinos, I., Brown, L. E., & Aliferis, C. F. (2006). The max-min hill-climbing Bayesian
network structure learning algorithm. Machine learning, 65, 31-78.

Tzanetos, A., & Dounias, G. (2020). Nature inspired optimization algorithms or simply
variations of metaheuristics? Artificial Intelligence Review, 1-22.

Wang, B., Zhang, B., Liu, X., & Zou, F. (2020). Novel infrared image enhancement
optimization algorithm combined with DFOCS. Optik, 224, 165476.

Wu, C., Wu, P., Wang, J., Jiang, R., Chen, M., & Wang, X. (2020). Critical review of data-driven
decision-making in bridge operation and maintenance. Structure and Infrastructure
Engineering, 1-24.

Wu, G. (2016). Across neighborhood search for numerical optimization. Information Sciences,
329, 597-618.

Wu, G., Pedrycz, W., Suganthan, P. N., & Mallipeddi, R. (2015). A variable reduction strategy
for evolutionary algorithms handling equality constraints. Applied Soft Computing, 37,
774-786.

Yan, J., Pu, W., Zhou, S., Liu, H., & Greco, M. S. (2020). Optimal Resource Allocation for
Asynchronous Multiple Targets Tracking in Heterogeneous Radar Networks. IEEE
Transactions on Signal Processing, 68, 4055-4068.

Yang, L., & Chen, H. (2019). Fault diagnosis of gearbox based on RBF-PF and particle swarm
optimization wavelet neural network. Neural Computing and Applications, 31, 4463-4478.

Yang, X.-S. (2010a). Firefly algorithm, stochastic test functions and design optimisation. arXiv
preprint arXiv:1003.1409.

Yang, X.-S. (2010b). A new metaheuristic bat-inspired algorithm. In Nature inspired cooperative
strategies for optimization (NICSO 2010) (pp. 65-74): Springer.

Yang, X.-S., & Deb, S. (2010). Engineering optimisation by cuckoo search. International Journal of
Mathematical Modelling and Numerical Optimisation, 1, 330-343.

Zhang, C. W., Ou, J. P., & Zhang, J. Q. (2006). Parameter optimization and analysis of a vehicle
suspension system controlled by magnetorheological fluid dampers. Structural Control
and Health Monitoring: The Official Journal of the International Association for Structural Control
and Monitoring and of the European Association for the Control of Structures, 13, 885-896.

Zhang, J., Zhou, Y., & Luo, Q. (2018). An improved sine cosine water wave optimization
algorithm for global optimization. Journal of Intelligent & Fuzzy Systems, 34, 2129-2141.

Zhao, W., Wang, L., & Zhang, Z. (2019). Atom search optimization and its application to solve
a hydrogeologic parameter estimation problem. Knowledge-Based Systems, 163, 283-304.

Zheng, L., & Zhang, X. (2017). Modeling and analysis of modern fluid problems: Academic Press.

