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Abstract  

The optimization field suffers from the metaphor-based "pseudo-novel" or "fancy" 

optimizers. Most of these cliché methods mimic animals' searching trends and possess 

a small contribution to the optimization process itself. Most of these cliché methods 

suffer from the locally efficient performance, biased verification methods on easy 

problems, and high similarity between their components' interactions. This study 

attempts to go beyond the traps of metaphors and introduce a novel metaphor-free 

population-based optimization based on the mathematical foundations and ideas of the 

Runge Kutta (RK) method widely well-known in mathematics. The proposed RUNge 

Kutta optimizer (RUN) was developed to deal with various types of optimization 

problems in the future. The RUN utilizes the logic of slope variations computed by the 

RK method as a promising and logical searching mechanism for global optimization. 

This search mechanism benefits from two active exploration and exploitation phases 

for exploring the promising regions in the feature space and constructive movement 

toward the global best solution. Furthermore, an enhanced solution quality (ESQ) 

mechanism is employed to avoid the local optimal solutions and increase convergence 

speed. The RUN algorithm's efficiency was evaluated by comparing with other 

metaheuristic algorithms in 50 mathematical test functions and four real-world 

engineering problems. The RUN provided very promising and competitive results, 

showing superior exploration and exploitation tendencies, fast convergence rate, and 

local optima avoidance. In optimizing the constrained engineering problems, the 

metaphor-free RUN demonstrated its suitable performance as well. The authors invite 

the community for extensive evaluations of this deep-rooted optimizer as a promising 

tool for real-world optimization. The source codes, supplementary materials, and 

guidance for the developed method will be publicly available at different hubs at and 

http://imanahmadianfar.com, http://aliasgharheidari.com/RUN.html, and 

http://mdm.wzu.edu.cn/RUN.html. 

Keywords: Genetic algorithms; Evolutionary algorithm; Runge Kutta optimization; 

Optimization; Swarm intelligence; Performance. 

1. Introduction  

Most real-world problems are complicated and present difficulties in being 

optimized. These problems are often characterized by nonlinearity, multimodality, non-

differentiability, and high dimensionality. Because of these properties, the conventional 

gradient-based optimization methods, such as quasi-Newton, conjugate gradient, and 

sequential quadratic programming methods, are unable to optimize such problems 

virtually (Nocedal & Wright, 2006; Wu, 2016). Therefore, existing literature suggests 

that other optimization techniques need to be developed for more efficient and 

http://imanahmadianfar.com/
http://aliasgharheidari.com/RUN.html
http://mdm.wzu.edu.cn/RUN.html
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effective optimization. An optimization problem can be in many-objective forms (Cao, 

Dong, et al., 2020; Cao, Wang, et al., 2020). One another problem can be multi-

objective (Cao, Zhao, Yang, et al., 2019), memetic (Fu, et al., 2020), fuzzy (Chen, Qiao, 

et al., 2019), robust (Qu, et al., 2020), large scale (Cao, Fan, et al., 2020; Cao, Zhao, et 

al., 2020), and single-objective. Real-world problems are faced every day, and we need 

to develop solvers for deep learning applications (Chen, Chen, et al., 2020; Li, et al., 

2019; Qiu, et al., 2019), decision-making procedures (Liu, et al., 2016; Liu, et al.; Wu, et 

al., 2020), optimal resource allocation (Yan, et al., 2020), image improvement 

optimization (Wang, et al., 2020), deployment optimization in networks (Cao, Zhao, 

Gu, et al., 2019), water-energy optimization (Chen, et al., 2017), training systems and 

methods in artificial neural networks (Mousavi, et al., 2020), and optimization of the 

parameters (Zhang, et al., 2006). Numerous metaheuristic optimization algorithms 

(MOAs) have been developed and widely employed as suitable alternative optimizers to 

solve various problems due to their flexibility and straightforward implementation 

procedure (Chen, Fan, et al., 2020; Yang & Chen, 2019). MOAs can be categorized into 

three groups (Kaveh & Bakhshpoori, 2016): evolutionary algorithms (EAs), physics-

based algorithms (PBAs), and swarm-based algorithms (SBAs). Nevertheless, they 

present some drawbacks, including high sensitivity and their control parameter settings. 

Also, they do not always converge toward the globally optimal solution (Wu, et al., 

2015). As they utilize some randomly generated components within the procedure (Sun, 

et al., 2019), an appropriate balance between exploration and exploitation cannot be 

ensured. This limit is one of the fundamental challenges within all kinds of methods in 

this area. 

The methods under the class of EAs are based on the principles of evolution in 

nature, such as selection, recombination, and mutation. The genetic algorithm (GA), 

another widely-used EA, was inspired by Darwin's theory of evolution (Holland, 1975). 

Other EAs include genetic programming (GP) (Koza, 1994), differential evolution 

(DE) (Storn & Price, 1995), and evolution strategy (Beyer & Schwefel, 2002). The 

methods in this category have the deepest roots in their foundation theory compared to 

other approaches, as Darwin's theory reshaped our vision of the tree of life. Later, the 

development of physics-based algorithms (PBAs) emerged as a trend in the field 

inspired by physics laws governing the surrounding world. For instance, among these 

emerging PBA algorithms, simulated annealing (SA) is the most popular one 

(Kirkpatrick, et al., 1983). Other PBAs include gravitational search algorithm (GSA) 

(Rashedi, et al., 2009), central force optimization (Formato, 2007), differential search 

(DS) (Liu, et al., 2015), vortex search algorithm (VSA) (Doğan & Ölmez, 2015), and 

gradient-based optimizer (GBO) (Ahmadianfar, Bozorg-Haddad, et al., 2020). 

Researchers tried to simulate organisms' cooperative behaviors in flocks after years 

passed, which are natural or artificial (Baykasoğlu & Ozsoydan, 2017). For example, the 

main inspiration in particle swarm optimization (PSO) (Eberhart & Kennedy, 1995) is a 

flock of birds' social behaviors. Other SBA examples include the Bat algorithm (BA) 

(Yang, 2010b), cuckoo search (CS) (Gandomi, et al., 2013), ant colony optimization 

https://www.powerthesaurus.org/nevertheless/synonyms
https://en.wikipedia.org/wiki/Evolution_strategy
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(ACO) (Dorigo & Di Caro, 1999), artificial bee colony (ABC) (Karaboga & Basturk, 

2007), firefly algorithm (FA) (Yang, 2010a), slime mould algorithm (SMA)1 (Li, et al., 

2020), and Harris hawks optimization (HHO)2 (Heidari, Mirjalili, et al., 2019).   

On the other hand, evolution served as the core idea of swarm-based methods 

that evolved the algorithms themselves. Two large influences of these evolving and 

algorithms included the searching trend for an "unused" biologic source of inspiration 

and utilizing it as a dress for a set of equations. These unwanted ambiguous directions 

first occurred when the black hole optimizer appeared as a modified PSO with a new 

dress (Piotrowski, et al., 2014). Later, another issue was raised by a team of researchers 

in China, who proved that the widespread grey wolf optimizer (GWO) has a defect, 

and there is a problem in the verification process (Niu, et al., 2019). It is also exposed 

that there is no novelty in GWO, and its structure resembled some variants of PSO 

with a metaphor (Camacho Villalón, et al., 2020). This method's metaphor is not 

implemented, as mentioned in the original work (Camacho Villalón, et al., 2020). Such 

inaccuracy affects the reliability of methods and questions the validity of metaphor-

based methods like GWO and the black hole algorithm. Despite the weaknesses, 

metaphors, and structural differences of various optimization algorithms (Tzanetos & 

Dounias, 2020), they all employ two typical phases, exploration and exploitation, to 

search the solution space regions (Salcedo-Sanz, 2016). Exploring is an optimization 

algorithm's ability to sincerely search the entire solution space and explore the 

promising areas. At the same time, exploitation is the capability of an optimization 

algorithm to search around near-optimal solutions. Generally, the exploration phase of 

an optimizer should randomly produce solutions in various regions of the solution 

space during early iterations of the optimization process (Heidari, Aljarah, et al., 2019). 

In contrast, the exploitation phase of an optimization algorithm should create a robust 

local search. Thus, a well-designed idea should be able of creating a suitable balance 

between the exploration and exploitation phases.     

Generally, creating an appropriate trade-off between exploration and 

exploitation is an essential task for any optimization algorithm (Ahmadianfar, 

Kheyrandish, et al., 2020). In this regard, many researchers have attempted to improve 

the optimizers' performance by selecting appropriate control parameters or hybridizing 

with other optimizers (Abdel-Baset, et al., 2019; Ahmadianfar, et al., 2019; Luo, et al., 

2017; Zhang, et al., 2018). Nevertheless, creating a robust algorithm that can balance 

exploration and exploitation is a complex and challenging issue. Moreover, as there are 

many real-world problems, more accurate and more consistent optimizers are needed. 

To fill such a gap, a well-designed population-based optimization procedure is 

proposed in this research. The proposed algorithm, Runge Kutta optimizer (RUN), was 

designed according to the foundations of the Runge Kutta method3 (Kutta, 1901; 

                                                           
1  https://aliasgharheidari.com/SMA.html 
2  https://aliasgharheidari.com/HHO.html 
3 For a better presentation of the term, we use the term Runge Kutta in this paper 
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Runge, 1895). RUN uses a specific slope calculation concept based on the Runge Kutta 

method as an effective search engine for global optimization. The proposed algorithm 

consists of two main parts: a search mechanism based on the Runge Kutta method and 

an enhanced solution quality (ESQ) mechanism to increase solutions' quality. RUN's 

performance was evaluated by using 50 mathematical test functions, and the results 

were compared with those of other state-of-the-art optimizers. Furthermore, the 

proposed RUN was employed to solve four engineering design problems to test its 

ability and efficiency in solving a number of real-world optimization problems. 

This paper is organized as follows. Section 2 presents a summarized review of 

the Runge Kutta method. Section 3 provides the mathematical formulation and 

optimization procedures of the RUN algorithm. Section 4 evaluates the efficiency of 

the RUN to optimize different benchmark test functions. Section 5 assesses the ability 

of the proposed RUN in solving engineering design problems. Section 6 presents the 

main conclusions and some useful suggestions for future studies.    

2. Related works 

Generally, stochastic optimization algorithms can be categorized into two 

classes: single-based and population-based algorithms. The algorithm begins the 

optimization procedure with a single random position in the first class and updates it 

during each iteration (Mirjalili, et al., 2016). Simulated annealing (SA) (Kirkpatrick, et 

al., 1983), tabu search (TS) (Glover & Laguna, 1998), and hill-climbing (HC) 

(Tsamardinos, et al., 2006) belong to this class. The primary benefits of the single-based 

optimizers include easy implementation and a low number of function evaluations, 

while their main drawback is the high possibility of getting caught up in local solutions. 

In contrast, the population-based methods start the optimization procedure with a set 

of random solutions and update their positions at each iteration. The well-known GA, 

PSO, DE, ACO, ABC, and biogeography-based optimization (BBO) (Simon, 2008) 

belong to this category. Population-based optimization algorithms also have a relatively 

acceptable ability to avoid the local optimal solutions because they employ a set of 

solutions at each iteration instead of only evolving on a single agent. 

Accordingly, the population-based algorithms can handle the sceneries of 

feature space and increase the convergence speed. Furthermore, they can share 

information between solutions, making a more convenient search in complex and 

challenging feature spaces (Mirjalili, et al., 2016). Notwithstanding these advantages, 

these optimizers require many function evaluations during the optimization process and 

a relatively complicated/difficult implementation. Another unavoidable issue is that 

these methods apply a random-based vision for understanding the problem's 

topographies, making them unbalanced, inaccurate, or unsuccessful in finding any best 

solution.  However, sometimes a locally-accurate solution can satisfy the practitioners 

and requirements of real-world problems. Many studies indicate that the population-

based optimizers are regarded as more reliable and accurate than the single-based 
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algorithms because of the advantages mentioned above. Their applications in a broad 

range of fields have demonstrated their worthiness and high capability. Generally, these 

optimization algorithms have been largely inspired physics's laws, social behaviors of 

creatures, and natural phenomena. 

Of pertinent mention, a study by Sörensen on the low-quality contributions in 

the optimization methods opened the eyes of many researchers (Sörensen, 2015). As 

per this research, shallow mathematic models supplied with metaphor-based outfits 

must be avoided to make improvements in the field (Lones, 2020). These metaphors 

are often perplexing and irrelevant to experts, decision-makers, algorithm designers, 

and those who utilize these methods for real-world cases. It has also been discovered 

that some methods, such as popular harmony search, are not very original, in which the 

core mathematic models are a version of (μ+1)-evolutionary search (Saka, et al., 2016). 

Regardless of these shortcomings, optimization algorithms consist of exploration and 

exploitation phases, as previously mentioned. Since establishing a reasonable balance 

between these two phases is a challenge for any optimization technique, designing a 

powerful and accurate optimization algorithm to achieve this goal is necessary. Hence, a 

novel population-based metaheuristic optimization algorithm based on the Runge 

Kutta method was developed in this study. The following two sections focus on the 

formulation of this new RUN algorithm.   

3. Overview of Runge Kutta method in differential equations 

The Runge Kutta method (RKM) is broadly used to solve ordinary differential 

equations (Kutta, 1901; Runge, 1895). RKM can be applied to create a high-precision 

numerical method by using functions without requiring their high-order derivatives 

(Zheng & Zhang, 2017). The primary formulation of the RKM is described as follows.  

Consider the following first-order ordinary differential equation for an initial 

value problem:   

  

  
  ( , ),     (  )     (1) 

In RKM, the main idea is to define  ( , ) as the slope (S) of the best straight 

line fitted to the graph at the point ( , ). Using the slope at point (  ,  ), another 

point can be obtained by using the best fitted straight line: (  ,  )  (     ,    

    ), where     (  ,  ). Similarly, (  ,  )  (     ,        ). This 

process can be repeated m times, which yields an approximate solution in the range of 

[  ,       ].  

The derivation of RKM is based on the Taylor series, which is given by:  

 (    )   ( )    ( )      ( )
(  ) 

  
    (2) 

https://www.sciencedirect.com/science/article/pii/S0747717103001135
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By dropping the higher-order terms, the following approximate equation can be 

obtained. 

 (    )   ( )    ( )    (3) 

According to Eq. (3), the formula for the first-order Runge Kutta method (or 

Euler method) can be expressed as:  

 (    )   ( )       
 

 (4) 

where      ( )   ( , ); and        -   . 

The first-order derivative (  ( )) can be approximated by using the following 

central differencing formula (Patil & Verma, 2006):  

  ( )  
 (    )   (    )

   
 

 

(5) 

Thus, the rule in Eq. (4) can be rewritten as:  

 (    )   ( )  
 (    )   (    )

 
 

 

(6) 

In this study, the fourth-order Runge Kutta (RK4) (England, 1969) derived 

from Eq. (2) was used to develop the proposed optimization method. The formula for 

the RK4 method, which is based on the weighted average of four increments (as shown 

in Fig. 1), can be expressed as:  

 (    )   ( )  
 

 
(               )   (7) 

in which the four weighted factors (k1, k2, k3, and k4) are respectively given by:  

 

     ( )   ( , )  

    (  
  

 
,   

  

 
   )  

    (  
  

 
,   

  

 
   ) (8) 

    (    ,        )  

where   is the first increment and determines the slope at the beginning of the interval 

[ ,     ] using  .   is the second increment and specifies based on the slope at the 
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midpoint, using   and   ;    is the third increment and defines regarding the slope at 

the midpoint, using   and   ; and    is the fourth increment and is determined based 

on the slope at the end of the interval, using   and   . According to RK4, the next 

value  (    ) is specified by the current value  ( ) plus the weighted average of 

four increments. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Slopes utilized in the RK method 

4. Introduction to the Runge Kutta optimizer 

In this study, a new swarm-based model with stochastic components is 

developed for optimization purposes. This model eliminates the cliché inspiration 

attachment with itself the proposed RUN method is represented by using a metaphor-

free language with emphasis on the mathematical core as some sets of activated rules at 

the proper time. Using metaphors in a population-based model is rejected since the 

only benefit of such a way is to hide the real nature of the equations utilized within the 

optimizers. Therefore, RUN accounts for the main logic of the RK technique and the 

population-based evolution of a crowd of agents. In fact, the RK uses a specific 

formulation (i.e., RK4 method) to calculate the slope and solve the ordinary differential 

equations (Kutta, 1901; Runge, 1895).  RUN's main idea is based on the concept of the 

proposed calculated slope in the RK method. The RUN uses the calculated slope as a 

searching logic to explore the promising area in the search space and build a set of rules 

for the evolution of a population set according to the swarm-based optimization 

algorithm’s logic. The mathematical formulation of RUN is detailed in the following 

subsections. 

4.1. Initialization step 

𝑥  𝑥  
 𝑥

 
 𝑥   𝑥 

𝑦  

𝑦 (𝑥   𝑥) 
𝑒𝑥𝑎𝑐𝑡 

 

𝑘  

𝑘  
𝑘  

𝑘  

1

𝑦 (𝑥   𝑥) 
𝑅𝑢𝑛𝑔𝑒 𝐾𝑢𝑡𝑡𝑎 

 

error 

 

 
(𝑘    𝑘    𝑘  𝑘 ) 



9 
 

In this step, the logic is to set an initial swarm to be evolved within the allowed 

number of iterations. In RUN, N positions are randomly generated for a population 

with a size of N. Each member of the population,    (   ,  ,  ,  ), is a solution 

with a dimension of D for an optimization problem. In general, the initial positions are 

randomly created by the following idea: 

  ,         .(     ) (9) 

where    and    are the lower and upper bounds of the  th variable of the problem 

(   ,  ,  ,  ), and      is a random number in the range of [0, 1]. This rule simply 

generates some solutions within limits.  

4.2. Root of search mechanism 

The power of any optimizer is dependent on its iterative cores for generating 

the exploration and exploitation patterns. In the exploration core, an optimization 

algorithm uses a set of random solutions with a high randomness rate to explore the 

promising areas of the feasible space. Small and gradual variations in the exploitation of 

core solutions and random behaviors are remarkably lower than those in the 

exploration mechanism (Mirjalili, 2015a). In this study, RUN's leading search 

mechanism is based on the RK method to search the decision space using a set of 

random solutions and implement a proper global and local search.   

The RK4 method was employed to determine the search mechanism in the 

proposed RUN. The first-order derivative was utilized to define the coefficient   , 

which is calculated by Eq. (5). Moreover, the proposed optimization algorithm uses 

position    instead of its fitness ( (  )), because applying the objective function of a 

position needs considerable time in computing. According to Eq. (5),       and 

      are two neighboring positions of   . By considering  ( ) as a minimization 

problem, positions       and       have best and worst positions, respectively. 

Therefore, to create a population-based algorithm, position       is equal to    (i.e., 

   is the best position around   ), while the position       is equal to  w (i.e.,  w is 

the worst position around   ). Therefore,   is defined as:  

w b
1

2

x x
k

x





 (10) 

where  w and    are the worst and best solutions obtained at each iteration, which are 

determined based on the three random solutions selected from the members of the 

population (   ,    ,    ), and   1  2  3  .  

In order to enhance the exploration search and create a randomness behavior, 

Eq. (10) can be rewritten as follows: 

   
 

   
(      w      ) 

(10-1) 
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       (      )  (      ) (10-2) 

where      is a random number in the range of [0, 1]. Overall, the best solution (  ) 

plays a crucial role in finding promising areas and moving toward the global best 

solution. Therefore, in this study, a random parameter ( ) is used to increase the 

importance of the best solution (  ) during the optimization process. In Eq. (10),    

can be specified by:   

                (11-1) 

         .(            )   / (11-2) 

       (        (   ))      (   
 

    
) 

(11-3) 

where    is the position increment, which depends on parameter    .     is the step 

size determined by the difference between    and     . Parameter   is a scale factor 

determined by the solution space's size, decreasing exponentially during the 

optimization process.      is the average all solutions at each iteration. Using the 

random numbers (    ) in Eqs. (11-1) to (11-3), the method can produce more 

diversification trends and find various search space areas.  
 

Accordingly, the three other coefficients (i.e.,   ,   , and   ) can be 

respectively written as:  

   
 

   
(    .( w       .  .  )  ( .        .  .  ))  (12) 

   
 

   
(    .( w       . (

 

 
  ) .  )  ( .        . (

 

 
  ) .  ))  (13) 

   
 

   
(    .( w       .  .  )  ( .        .  .  )) (14) 

where      and       are two random numbers in the range of [0, 1]. In this study, 

 w and    are determined by the following:                                                                                                                                                              

    (  )   (   ) 

(15) 

            

              
     

             

            
    
 

where     is the best random solution, which is selected from the three random 

solutions (   ,    , and    ). According to Eq. (15), if the fitness of the current 
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solution ( (  )) is better than that of    , the best and worst solutions (   and   ) are 

equal to    and    , respectively. Otherwise, they are equal to     and   , respectively. 

Therefore, the leading search mechanism in RUN can be defined as: 

   
 

 
(   )   (16) 

in which 

                                                                                          (16-1) 

4.3. Updating solutions 

The RUN algorithm begins the optimization process with a set of random 

individuals (solutions). At each iteration, solutions update their positions using the RK 

method. To do this, RUN uses a solution and the search mechanism obtained by the 

RK method. Figure 2 depicts how a position updates its position by using the RK 

method. In this study, to provide the global (exploration) and local (exploitation) 

search, the following scheme is implemented to create the position at the next iteration:  

in which 

                

where   is a random number,       is a random number with a normal distribution. 

k2

k3

k4

xn+1

xn

k1

Feasible space

Variable 1

V
a
ri

a
bl
e
 2

 

Fig. 2. Slopes employed by the RK to obtain the next position (    ) in the RUN 

algorithm 

                                       .  

(17) 

                         (exploration phase) 

                              (  )             

                                  

                        (exploitation phase) 
                            (  )              
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The formulas of    and     are expressed as  

                                              .(     )                                     (17-1) 

                                               .(       )                                  (17-2) 

   and    can be calculated as follows:  

                                                           (   )                              (17-3) 

                                                              (   )                        (17-4) 

where   is a random number in the range of (0,1).       is the best-so-far solution. 

       is the best position obtained at each iteration.    is an adaptive factor, which is 

given by:  

    .(0.5      )   (17-5) 

in which  

 

       (        (
 

    
)) (17-6) 

where   and   are two constant numbers.   is the number of iterations.      is the 

maximum number of iterations. In this study,    was employed to provide a suitable 

balance between exploration and exploitation. Based on Eq. (17-5), a large value of SF 

is specified in the early iterations to increase the diversity and enhance the exploration 

search; then, its value reduces to promote the exploitation search capability by 

increasing the number of iterations. The main control parameters of RUN include two 

parameters employed in the (  ), which are a and b. 

The rule in Eq. (17) shows that the proposed RUN selects the exploration and 

exploitation phases based on the condition      < 0.5. This novel procedure used for 

optimization in RUN ensures that if       . , a global search is applied in the 

solution space and a local search around solution    is performed simultaneously. By 

implementing a novel global search (exploration), the RUN can explore the search 

space's superior promising regions. On the other hand, if       . , RUN uses a 

local search around solution   . By applying this local search phase, the proposed 

algorithm can effectively increase the convergence speed and focus on high-quality 

solutions.  

To perform the local search around the solutions    and   and explore the 

promising regions in the search space, Eq. (17) is rewritten as follows: 
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where   is an integer number, which is 1 or -1. This parameter changes the search 

direction and increases diversity.   is a random number in the range [0, 2]. According 

to Eq. (18), the local search around    decreases as the number of iterations increases. 

Fig. 3 displays the search mechanism of RUN, indicating how to generate position 

     at the next iteration.  

k1

k3

k4

xc+1/6 (xRK)Δx

xc

Feasible space

Variable 1

V
ar

ia
bl
e 

2

µ .(xm-xc)

xn+1

xm

k2

 

Fig. 3. Search mechanism of the RUN 

 

4.4. Enhanced solution quality 

In the RUN algorithm, enhanced solution quality (ESQ) is employed to 

increase the quality of solutions and avoid local optima in each iteration. By applying 

                             .  

(18) 

                         (exploration phase) 

                    (            )             

                                  

                        (exploitation phase) 

                    (            )              
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ESQ, the RUN algorithm ensures that each solution moves toward a better position. In 

the proposed ESQ, the average of three random solutions (    ) is calculated and 

combined with the best position (  ) to generate a new solution (     ). The following 

scheme is executed to create the solution (     ) by using the ESQ:  

             
 

               

(19

) 

                           . . (          )         

            

                    (          )   . . ( .          )         

            

    
 

 

in which  

      ( ,  ).   (  (
 

    
)) 

     
           

 
 

(19-1) 

             (   )        (19-2) 

where   is a random number in the range of [0, 1].   is a random number, which is 

equal to 5      in this study.   is a random number, which decreases with the 

increasing number of iterations.   is an integer number, which is 1, 0, or -1.       is the 

best solution explored so far. According to the above scheme, for     (i.e., the later 

iterations), solution       trends to create an exploitation search, while for     (i.e., 

the early iterations), solution       trends to make an exploration search. Note that in 

the latter condition, to increase the diversity, parameter   is defined. It is noteworthy 

that ESQ is applied when the condition          is met.  

The solution calculated in this part (     ) may not have better fitness than 

that of the current solution (i.e.,  (     )   (  )). To have another chance for 

creating a good solution, another new solution (     ) is generated, which is defined as 

follows: 

if rand<    

      (          .     )    .(    .    ( .        ))  (20) 

end  

where   is a random number with a value of       . In fact, the new solution 

(     ) is implemented when the condition rand<   is met. The main objective of Eq. 

(20) is to move the solution       towards a better position. In the first rule of this 

equation, a local search around       is generated, and in the second rule, RUN 
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attempts to explore the promising regions with the movement towards the best 

solution. Hence, to emphasize the importance of the best solution, coefficient   is 

used. It should be noted that to calculate    , solutions    and    become    and 

     , respectively, because the fitness value of    is less than that of       

(      (     )   (  )). The pseudo-code of and flowchart of RUN are presented in 

Algorithm 1.  and Fig. 4, respectively.  

 

 

Algorithm 1.  The pseudo-code of RUN 

Stage 1. Initialization 
Initialize  ,   

Generate the RUN population   (   , 2,  ,  )  
Calculate the objective function of each member of population  

Determine the solutions   ,   , and       
Stage 2. RUN operators 
    for i= 1: Maxi 
          for n = 1 : N  
               for l = 1 : D 

                 Calculate position        using Eq. 18 

              end for 
              Enhance the solution quality 
                if        .  

                  Calculate position       using Eq. 19 

                     if  (  )   (     ) 

                      if rand<   

                            Calculate position       using Eq. 20 
                        end 
                     end 
                end 

            Update positions    and    

          end for 

          Update position       
       i=i+1 
    end  

Stage 3. return       
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Fig. 4. Flowchart of the RUN algorithm 

As shown in Fig. 5, three paths are considered for optimization in RUN. The 

proposed algorithm first uses the RK search mechanism to generate position      and 

then employs the ESQ mechanism to explore the promising regions in the search 

space. According to this mechanism, RUN follows three paths to reach a better 

solution. In the first and second paths, position       calculated by the ESQ is 

compared with the position     . If the fitness of       is worse than that of      

(i.e.,  (     )   (    )), another position (     ) is generated. If  (     )  

 (    ), the best solution is       (second path). Otherwise, it is      (first path). In 

the third path, if   (     )   (    ), the best solution is      .  

The following characteristics theoretically demonstrate the proficiency of RUN 

in solving various complex optimization problems: 

 Scale factor (  ) has a randomized adaptation nature, which assists RUN in 

further improving the exploration and exploitation steps. This parameter 

ensures a smooth transition from exploration to exploitation. 

 Using the average position of solutions can promote RUN's exploration 

tendency in the early iterations. 

 RUN employs a search mechanism based on the RK method to boost both 

exploration and exploitation abilities. 

 The enhanced solution quality (ESQ) in the RUN algorithm utilizes the thus-far 

best solution to promote the quality of solutions and improve the convergence 

speed.  

 In the RUN algorithm, it is possible that if the new solution is not in a better 

position than the current solution, it can identify a new different position in the 

search space to reach a better position. This process can enhance the quality of 

solutions and improve the convergence rate.  

 The search mechanism and ESQ use two randomized variables to emphasize 

the importance of the best solution and move toward the global best solution, 

which can effectively balance the exploration and exploitation steps. 



17 
 

  

 

Fig. 5. Optimization process in the RUN 

4.5. Computational complexity 

RUN algorithm mainly includes the following parts: initialization, getting the 
maximum and minimum fitness, getting the minimum in three random individuals, 
exploration of the search space, parameter updating, and fitness evaluation. Among 

them,   indicates the number of individuals in the population,   is the problem's 

dimension, and        indicates the maximum number of iterations. The 
computational complexity of initialization, fitness evaluation, parameter updating, and 

exploration of the search space is   ( ), getting the minimum in three random 

individuals is  (  ) and the getting the maximum and minimum fitness is  (  ). 

From this, we can get the complexity of the whole algorithm:  (       
        (        )). 

 

5. Results and discussion 

The new RUN algorithm's ability was verified using 20 benchmark functions, 

which have been used by many researchers (Ahmadianfar, et al., 2019; Huang, et al., 

2019; Tian & Gao, 2017; Zhao, et al., 2019). The set of benchmark problems employed 

in this study involves three families of mathematical functions: unimodal functions 

(UFs) (f1-f6), multimodal functions (MFs) (f7-f14), and hybrid functions (HFs) (f15-f20) The 

details on these test functions are shown in Tables 1-3.   
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Table 1. Unimodal test functions. 

Function D Range fmin 
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Table 2. Multimodal test functions. 

Function D Range fmin 
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Table 3. Hybrid benchmark functions  

fmin Search space D Name Test function 

1700 [-100, 100] 30 HF 1 (N=3)    ( ) 

1800 [-100, 100] 30 HF 2 (N=3)    ( ) 

1900 [-100, 100] 30 HF 3 (N=4)    ( ) 

2000 [-100, 100] 30 HF 4 (N=4)    ( ) 

2100 [-100, 100] 30 HF 5 (N=5)    ( ) 

2200 [-100, 100] 30 HF 6 (N=5)    ( ) 

The unimodal test functions with a global best position can evaluate different 

optimization algorithms' exploitative behavior, while the multimodal test functions can 

assess their exploration and local optima avoidance capabilities. It should be noted that 

the hybrid test functions are more challenging and complicated than the unimodal and 

multimodal test functions (Ahmadianfar, Bozorg-Haddad, et al., 2020). Therefore, they 

are incredibly suitable to validate the optimizers' ability to solve complicated real-world 

optimization problems. The proposed RUN results and efficiency were compared with 

those of other well-known algorithms, including the GWO (Mirjalili, et al., 2014), 

WOA(Mirjalili & Lewis, 2016), WCA (Eskandar, et al., 2012), IWO (Hosseini, 2007), 

and CS (Yang & Deb, 2010) algorithms, based on the average and standard deviation of 

the results. The GWO and IWO were included in the comparisons, as these widely-

used methods are two examples of the metaphor-based optimizers (Camacho Villalón, 

et al., 2020). Six different test functions were selected to assess the effects of the RUN 

algorithm qualitatively. Figure 6 depicts the qualitative results of test functions f1, f2, 

f4, f7, f10, and f12. RUN was employed for minimizing these functions by using five 

solutions over 200 iterations. 

5.1. Experimental setup 
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The population size and the total number of iterations were set respectively 

equal to 50 and 500 for the UFs and MFs and 50 and 1000 for the HFs. All results were 

presented and compared in terms of the optimization algorithms' average efficiencies 

over 30 independent runs. For GWO, WOA, CS, IWO, and WCA, the control 

parameters were the same as those suggested in the original work. Table 4 lists the 

parameters used in this study 

Table 4. Parameter settings of optimization algorithms 

Optimizers         Parameters 

RUN a = 20 and b = 12 

GWO              

WOA 
             

               

CS Rate of discovery = 0.25 

WCA 
number of rivers + sea (Nsr) = 10 

a controlling parameter (dmax) = 0.1 

IWO 

maximum number of seeds (Smax) = 15 

minimum number of seeds (Smin) = 0 

initial value of standard deviation          = 5 

final value of standard deviation        = 0.01 

5.2. Qualitative results of RUN 

Three well-known qualitative metrics used to demonstrate RUN's performance 

were search history, trajectory graph, and convergence curve. The search history graph 

discloses the history of the RUN algorithm's positions during the optimization process. 

The trajectory curve displays how the first dimension of a solution changed during the 

iterations. The convergence curve demonstrates how the fitness value of the best 

solution changed during the optimization process.  

Figure 6 shows that RUN yielded a similar pattern to solve different problems 

regarding the history of positions. This indicates that an attempt was made to initially 

increase the exploration and find the promising regions of the search space and then 

exploit the neighborhood of the best solutions. From the trajectory curves in Fig. 6, it 

can be observed that RUN began the searching process with sudden fluctuations, 

which involved about 100% of the search space. This behavior reveals the exploration 

tendency of the RUN algorithm. As the number of iterations increased, the amplitude 

of these variations reduced. This procedure ensured the transition of RUN from the 

exploratory search towards exploitative trends. Therefore, it is concluded from the 

trajectory graphs that the RUN algorithm first provided the exploration trend and then 

shifted to the exploitation stage.  

The convergence graph is usually employed to assess the convergence 

performance of optimizers. Fig. 6 displays an accelerated reducing pattern in all 

convergence curves, especially in the early iterations. It also shows the approximate 
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timing when RUN transferred from the exploration to the exploitation phase. These 

results demonstrate the suitable accelerated convergence behavior of RUN. 

5.3. Assessment of the exploitative behavior 

Typically, UFs are used to test the exploitability of the optimization algorithms. 

Since UFs (f1-f6) have only one global best solution, they can be used to evaluate the 

exploitation ability of the optimization algorithms. Table 5 shows the results of the 

RUN, GWO, WOA, CS, IWO, and WCA algorithms for the UFs, including the 

average, best, and standard deviation values of the fitness function for 30 different 

runs. The comparisons of RUN with the five other meta-heuristic optimization 

algorithms demonstrated that RUN was the best optimizer to solve the UFs and 

provide competitive results. Particularly, the proposed RUN algorithm exhibited an 

excellent exploitation behavior. 

 

5.4. Assessment of the exploratory behavior 

The multimodal functions (f7-f14) were used to validate all optimizers' 

exploratory behaviors since they had many local optimal solutions. Table 5 shows the 

results of MFs obtained by the RUN, GWO, WOA, CS, IWO, and WCA algorithms, 

indicating the superior performance of RUN to the other optimizers, except for f11. For 

function f11, RUN was inferior to the WOA algorithm and superior to GWO and WCA. 

The results presented in Table 5 for test functions f7-f14 demonstrate that RUN also has 

a superior exploration ability due to the use of the exploration mechanism that ensures 

the search process towards the global best solution. 

5.5. Ability to avoid local optima 

The RUN's ability to avoid the local optima was evaluated by using hybrid 

functions (f15 - f20). These test functions are regarded as the most complicated 

benchmark test functions, and only an optimizer with an appropriate balance between 

global and local optima can avoid the local solutions. Table 6 presents the results of 

RUN and the five other optimizers on the HFs.  

For the results of the HFs in Table 6, it can be clearly observed that RUN was 

the best optimizer among the six optimization algorithms on functions f15- f19 according 

to their average fitness values. For function f20, RUN was surpassed by GWO but 

superior to the WOA, CS, IWO, and WCA algorithms. Indeed, the proposed optimizer 

was the second-best effective optimizer for this test functions. This capability is due to 

the adaptive mechanism employed to update the    parameter and the ESQ 

mechanism in the proposed RUN, which assures a good transition from exploration to 

exploitation.  
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Fig. 6. Qualitative results of six benchmark test functions 
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Table 5.   Results of the UFs and MFs from RUN and five other meta-heuristic optimization algorithms 

Optimizer  
                          UFs  

f1 f2 f3 f4 f5 f6 

RUN 

Average 1.75E-132 6.68E-267 2.16E-129 2.45E+01 1.26E-137 2.35E-130 

Best 5.31E-145 3.55E-278 1.81E-145 2.29E+01 6.74E-147 1.20E-145 

SD 9.04E-132 0.00E+00 1.18E-128 1.04E+00 5.31E-137 1.29E-129 

GWO 

Average 3.87E-27 4.17E-97 5.78E-29 2.68E+01 5.60E-33 5.14E-30 

Best 4.33E-29 2.8E-108 2.25E-31 2.52E+01 1.61E-34 1.12E-31 

SD 7.73E-27 1.87E-96 1.48E-28 7.53E-01 5.84E-33 8.14E-30 

CS 

Average 2.52E-02 1.81E+01 9.00E-01 1.39E+02 5.16E-04 1.88E-01 

Best 4.44E-05 1.46E-06 5.38E-03 2.96E+01 6.67E-06 1.22E-02 

SD 1.17E-01 8.44E+01 1.70E+00 2.37E+02 7.63E-04 3.04E-01 

WCA 

Average 2.31E-05 6.77E-07 5.02E-09 7.38E+01 6.27E-07 2.86E+03 

Best 2.22E-07 4.05E-25 1.11E-10 8.80E-01 3.13E-12 7.39E-08 

SD 7.01E-05 3.70E-06 9.07E-09 6.54E+01 3.00E-06 7.78E+03 

WOA 

Average 6.75E-80 1.56E-110 5.52E+03 2.75E+01 2.86E-84 1.30E-81 

Best 9.43E-89 9.17E-141 2.88E+01 2.69E+01 2.63E-94 2.90E-89 

SD 2.45E-79 7.86E-110 3.85E+03 4.12E-01 1.11E-83 5.59E-81 

IWO 

Average 3.18E+03 1.53E+03 4.24E+02 4.10E+04 5.69E+04 5.01E+06 

Best 8.84E+01 1.06E-05 6.12E-05 2.37E+01 4.21E+04 1.25E+06 

SD 3.14E+03 1.96E+03 6.40E+02 9.02E+04 1.23E+04 2.57E+06 

  
MFs 

f7 f8 f9 f10 f11 f12 f13 f14 

RUN 
Average 0.00E+00 2.04E-01 3.82E-04 8.88E-16 1.04E-13 3.42E-01 0.00E+00 6.59E-08 

Best 0.00E+00 4.21E-07 3.82E-04 8.88E-16 6.39E-14 2.33E-01 0.00E+00 3.33E-08 

 SD 0.00E+00 1.13E-01 0.00E+00 0.00E+00 1.63E-14 7.53E-02 0.00E+00 1.95E-08 

GWO 
Average 5.91E+00 1.01E+00 3.82E-04 4.46E-14 2.91E+01 6.39E-01 6.13E-03 3.20E-02 

Best 2.11E+00 6.36E-01 3.82E-04 3.64E-14 2.27E+01 4.41E-01 0.00E+00 6.40E-03 

 SD 2.20E+00 1.59E-01 8.72E-13 4.19E-15 3.34E+00 9.60E-02 1.20E-02 2.33E-02 

CS 
Average 9.86E+00 2.41E+00 4.12E-04 3.73E-03 6.23E-02 5.93E-01 1.47E-02 1.69E-01 

Best 7.74E+00 6.28E-01 3.82E-04 4.69E-04 8.53E-14 4.42E-01 4.35E-10 5.29E-08 

 SD 8.36E-01 2.27E+00 4.54E-05 3.44E-03 9.52E-02 8.40E-02 1.80E-02 2.68E-01 

WCA 
Average 1.20E+01 2.92E+03 5.19E-03 3.40E+00 1.20E-01 5.30E-01 3.13E-02 3.64E-01 

Best 1.03E+01 1.10E+03 3.82E-04 2.19E-02 8.53E-14 2.53E-01 5.08E-12 1.53E-12 

 SD 6.12E-01 1.36E+03 2.63E-02 2.28E+00 5.12E-01 1.50E-01 3.86E-02 7.04E-01 

WOA 
Average 3.00E+00 5.12E-01 3.82E-04 3.73E-15 1.92E-14 5.24E-01 3.05E-03 1.03E-02 

Best 0.00E+00 6.99E-02 3.82E-04 8.88E-16 7.11E-15 2.60E-01 0.00E+00 1.30E-03 

 SD 4.43E+00 3.58E-01 5.55E-13 2.70E-15 6.62E-14 1.88E-01 1.67E-02 1.59E-02 

IWO 

Average 1.30E+01 4.59E+03 6.89E+02 1.24E+00 5.29E+00 3.58E-01 1.67E+02 1.27E-01 

Best 1.21E+01 3.25E+03 3.90E-04 5.07E-03 3.00E+00 2.21E-01 9.25E+01 4.80E-02 

SD 4.09E-01 6.11E+02 3.84E+02 4.71E+00 1.57E+00 8.82E-02 3.99E+01 8.93E-02 
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Table 6. Statistical results of the HFs from RUN and five other optimizers 

Optimizer  
HFs  

f15 f16 f17 f18 f19 f20 

RUN 
Average 104191.21 3435.33 1919.53 3519.30 48127.89 2674.29 

Best 26504.80 2149.82 1911.91 2345.66 10865.46 2229.29 

 SD 42897.96 801.49 5.01 2215.65 22065.81 227.33 

GWO 
Average 2017606.11 9419404.67 1945.42 23438.34 865855.49 2581.81 

Best 243778.74 4056.06 1912.26 11065.71 66706.84 2250.33 

 SD 2197530.17 22146302.91 26.45 12065.16 1222558.84 145.41 

CS 
Average 1638591.37 8614.09 1931.73 94953.78 405641.76 3114.17 

Best 168986.27 2070.91 1909.39 3577.19 16508.82 2364.87 

 SD 1608329.34 8165.00 30.62 309592.19 577986.74 364.57 

WCA 
Average 1096464.13 5561515.91 1927.69 24082.37 339962.26 2832.20 

Best 177033 2413.67 1910.27 5378.61 23640.99 2579.874 

 SD 742290.81 30411215.42 29.31 15291.10 223453.44 136.44 

WOA 
Average 11178976.28 93612.11 1964.90 76381.26 3876550.62 3084.20 

Best 2520022.97 9512.03 1919.07 28141.42 189834.25 2476.51 

 SD 7349962.08 94864.91 34.80 48244.50 4182086.86 252.11 

IWO 
Average 110385.61 5178.86 1922.03 30483.82 53137.20 3263.82 

Best 15620.9 2229.473 1907.79 3739.462 11885.51 2729.88 

 SD 73296.20 3721.69 21.40 13771.33 31510.29 283.44 

   

   



25 
 

 

5.6. Assessment of the convergence ability 

 Notwithstanding, the results presented in Tables 5-6 demonstrate the RUN 

algorithm's superior efficiency compared with the other optimizers. However, the 

convergence behavior analysis must also be performed to further assess the proposed 

RUN 's performance in solving optimization problems. The convergence curves of 

RUN, GWO, WOA, CS, IWO, and WCA are depicted in Fig. 7, revealing the 

relationships of the best-so-far fitness value explored (y-axis) and the number of 

functional evaluations (NFE) (x-axis). 

 

According to the convergence curves (Fig. 7), the following conclusions can be 

obtained: 

   

   
 

 

 

Fig. 7. Convergence graphs of the RUN and five other optimizers for the selected UFs, MFs, and HFs 
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 Concerning the convergence rate, the IWO, WCA, and CS algorithms displayed 

weak performances in optimizing the UFs and MFs, followed by the WOA and 

GWO algorithms.  

 The RUN optimizer had a faster convergence curve than the other algorithms 

for the unimodal and multimodal test functions due to the proper balance 

between exploration and exploitation.  

 For the HFs, the convergence rate of RUN tended to be accelerated by 

increasing the number of functional evaluations due to the ESQ and adaptive 

mechanism, which helped it to explore the promising areas of the solution 

space in the early iterations and more quickly converge towards the optimal 

solution after spending about 15% of the total number of function evaluations. 

 The convergence curves revealed that RUN did provide a more suitable 

convergence speed to optimize the test functions than the other optimizers.  

5.7. Ranking analysis 

The Friedman and Quade tests (Derrac, et al., 2011) were conducted to 

determine the six optimizers' influential performances. These tests employ a 

nonparametric two-way analysis of variance, which allows the comparison of several 

samples. Based on the Friedman test, all samples are equal in terms of importance. In 

contrast, the Quade test considers the fact that some samples are more difficult or 

complicated than others and, thus, provides a weighted ranking analysis of the samples 

(Derrac, et al., 2011).   

Tables 7 and 8 show the Friedman and Quade test ranks, including the 

individual, average, and final ranks for the average fitness values from RUN and the 

five other optimizers on all UF, MF, and HF test functions. The Friedman and Quade 

test results indicated that the RUN algorithm performed the best among the six 

algorithms on all test functions.  

Table 7. Friedman ranks for the UFs, MFs, and HFs for RUN and five other optimizers 

Optimizers 
UFs Average 

Rank 
Rank 

f1 f2 f3 f4 f5 f6 

RUN 1 1 1 1 1 1 1.00 1 

GWO 3 3 2 2 3 3 2.67 2 

CS 5 6 4 6 5 4 5.00 5 

WCA 4 4 5 4 4 5 4.33 4 

WOA 2 2 6 3 2 2 2.83 3 

IWO 6 5 3 5 6 6 5.17 6 

 
MFs 

  
f7 f8 f9 f10 f11 f12 f13 f14 

RUN 1 1 2 1 2 1 1 1 1.25 1 

GWO 3 3 2 3 6 6 3 3 3.63 4 

CS 4 4 4 4 3 5 4 5 4.13 3 

https://www.powerthesaurus.org/concerning/synonyms
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WCA 5 5 5 6 4 4 5 6 5.00 5 

WOA 2 2 2 2 1 3 2 2 2.00 2 

IWO 6 6 6 5 5 2 6 4 5.00 5 

 
HFs 

  
f15 f16 f17 f18 f19 f20 

RUN 1 1 1 1 1 2 1.17 1 

GWO 5 6 5 3 5 1 4.17 4 

CS 4 3 4 6 4 5 4.33 5 

WCA 3 5 3 2 3 3 3.17 3 

WOA 6 4 6 5 6 4 5.17 6 

IWO 2 2 2 4 2 6 3.00 2 

Table 8. Quade ranks for the UFs, MFs, and HFs for RUN and five other optimizers 

Optimizers 
UFs Average 

Rank 
Rank 

f1 f2 f3 f4 f5 f6 

RUN 5 1 2 6 3 4 1.00 1 

GWO 10 2 8 12 4 6 2.67 2 

CS 6 15 12 18 3 9 4.57 5 

WCA 16 12 4 20 8 24 4.14 4 

WOA 20 5 30 25 10 15 2.76 3 

IWO 18 12 6 24 30 36 5.86 6 

 
MFs 

  
f7 f8 f9 f10 f11 f12 f13 f14 

RUN 1.5 7 6 3 4 8 1.5 5 1.33 1 

GWO 28 24 8 4 32 20 12 16 3.31 3 

CS 24 21 3 6 12 18 9 15 3.94 4 

WCA 35 40 5 30 15 25 10 20 4.97 5 

WOA 16 12 6 2 4 14 8 10 1.89 2 

IWO 30 48 42 18 24 12 36 6 5.56 6 

 
HFs 

  
f15 f16 f17 f18 f19 f20 

RUN 6 3 1 4 5 2 1.10 1 

GWO 25 30 5 15 20 10 4.57 5 

CS 18 9 3 12 15 6 4.14 4 

WCA 20 24 4 12 16 8 3.33 3 

WOA 36 24 6 18 30 12 5.19 6 

IWO 12 6 2 8 10 4 2.67 2 

 

Table 9 displays the statistics and p-values of the Friedman and Quade tests for 

all test functions. As per the p-values calculated for the two tests, significant differences 

can be seen among all optimizers.  
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5.8. Comparison of RUN with advanced optimizers 

In order to further evaluate the efficiency of RUN, it was compared with eight 

advanced optimizers including CGSCA (Kumar, et al., 2017), SCADE (Nenavath & 

Jatoth, 2018), BMWOA (Heidari, Aljarah, et al., 2019), BWOA (Chen, Xu, et al., 2019), 

OBLGWO (Heidari, Abbaspour, et al., 2019), CAMES (Hansen, et al., 2003), GL25 

(García-Martínez, et al., 2008), and CLPSO (Liang, et al., 2006) in solving the CEC-BC-

2017 benchmark functions. The population size, maximum number of iterations, and 

dimension were set to 30, 500, and 30, respectively. All the optimization algorithms 

were also performed in 30 different runs for each mathematical test function.   

The best, average, and standard deviation of the results calculated by RUN and 

the eight advanced optimizers are summarized in Table 10. As shown in Table 10, 

RUN presented promising results on the CEC-BC-2017 functions compared with the 

other optimizers. Moreover, the proposed RUN displayed the best performance in the 

20 test functions (f2, f4, f5, f7, f8, f9, f10, f11, f13, f15-f24, and f26) and the second-best efficiency 

in the remaining 10 test functions (f1, f3, f6, f12, f14, f25, and f27-f30). In this study, to 

compute the average ranks of the optimization algorithms and specify their differences, 

the Friedman test was performed. Table 11 displays the average ranks of all the 

optimizers, where RUN achieved the best rank (1.33). Therefore, RUN had the best 

efficiency compared with the eight advanced optimizers. To investigate the 

convergence speed of RUN, the convergence curves were obtained for all the 

optimizers on the CEC-BC-2017 functions (Fig. 8). It can be observed from Fig. 8 that 

RUN achieved accurate solutions with a faster convergence rate than the eight 

advanced optimizers.    

Table 9. Statistic and p-value computed by the Friedman and Quade tests for the 
UFs, MFs, and HFs  

Average ranking 
 

Quade Friedman 

UFs     

10.3445 24.7619 Statistic 

1.83e-05 1.55e-04 p-value 

MFs  

12.9663 28.3333 Statistic 

3.61E-07 3.13e-05 p-value 

HFs  

5.0844 16.6667 Statistic 

2.40E-03 5.20E-03 p-value 
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Table 10. Statistical results of the RUN and eight advanced optimizers on CEC-BC-2017  

  RUN CGSCA SCADE BMWOA BWOA OBLGWO CMAES GL25 CLPSO 

f1 
Best 1.44E+04 1.53E+10 1.87E+10 5.20E+08 1.94E+09 4.44E+07 1.04E+02 6.83E+09 7.65E+09 

Average 3.75E+04 2.51E+10 2.97E+10 1.10E+09 5.58E+09 1.57E+08 5.45E+03 1.69E+10 1.16E+10 
SD 1.40E+04 5.37E+09 4.86E+09 3.73E+08 2.05E+09 8.59E+07 5.75E+03 5.28E+09 2.59E+09 

 Best 2.92E+14 9.54E+33 6.98E+34 6.58E+22 1.25E+27 2.68E+17 2.02E+10 2.93E+30 4.62E+32 

f2 Average 4.17E+17 8.96E+38 1.13E+40 1.86E+30 4.23E+35 3.80E+22 2.59E+31 4.01E+38 1.29E+43 

 SD 1.15E+18 2.88E+39 3.27E+40 1.01E+31 1.58E+36 9.92E+22 1.42E+32 1.32E+39 7.05E+43 

f3 
Best 3.59E+04 5.40E+04 5.72E+04 5.00E+04 5.78E+04 3.27E+04 1.23E+05 1.22E+05 1.09E+05 

Average 5.05E+04 7.16E+04 7.68E+04 7.99E+04 7.51E+04 4.97E+04 1.94E+05 1.72E+05 1.56E+05 
SD 8.29E+03 1.03E+04 7.59E+03 1.03E+04 7.58E+03 8.31E+03 5.92E+04 3.46E+04 2.38E+04 

f4 
Best 4.71E+02 1.45E+03 4.93E+03 6.09E+02 8.77E+02 5.19E+02 5.02E+02 1.58E+03 1.97E+03 

Average 5.13E+02 3.57E+03 6.99E+03 7.31E+02 1.41E+03 5.57E+02 9.98E+02 3.22E+03 3.08E+03 
SD 1.81E+01 9.87E+02 1.29E+03 1.11E+02 3.98E+02 3.05E+01 3.64E+02 1.07E+03 8.66E+02 

f5 
Best 5.92E+02 7.79E+02 8.19E+02 7.10E+02 7.23E+02 6.10E+02 5.79E+02 7.44E+02 7.54E+02 

Average 6.53E+02 8.52E+02 8.74E+02 8.09E+02 8.20E+02 6.84E+02 1.22E+03 8.46E+02 8.08E+02 
SD 2.91E+01 3.21E+01 2.41E+01 4.46E+01 3.44E+01 5.05E+01 1.92E+02 3.96E+01 2.60E+01 

f6 
Best 6.23E+02 6.54E+02 6.58E+02 6.53E+02 6.55E+02 6.07E+02 6.74E+02 6.44E+02 6.41E+02 

Average 6.40E+02 6.70E+02 6.74E+02 6.68E+02 6.74E+02 6.25E+02 6.97E+02 6.66E+02 6.58E+02 
SD 8.22E+00 7.50E+00 9.15E+00 8.50E+00 9.29E+00 1.28E+01 1.30E+01 9.60E+00 7.81E+00 

f7 
Best 8.02E+02 1.16E+03 1.17E+03 1.10E+03 1.10E+03 8.78E+02 7.71E+02 1.18E+03 1.13E+03 

Average 9.36E+02 1.26E+03 1.26E+03 1.25E+03 1.30E+03 1.01E+03 4.29E+03 1.33E+03 1.23E+03 
SD 5.73E+01 4.96E+01 5.32E+01 8.54E+01 7.04E+01 6.22E+01 1.19E+03 8.26E+01 4.37E+01 

f8 
Best 8.75E+02 1.07E+03 1.06E+03 9.74E+02 9.59E+02 8.99E+02 8.59E+02 1.07E+03 1.04E+03 

Average 9.21E+02 1.11E+03 1.12E+03 1.03E+03 1.02E+03 9.61E+02 1.37E+03 1.12E+03 1.10E+03 
SD 2.62E+01 1.99E+01 2.12E+01 2.46E+01 2.51E+01 4.16E+01 1.68E+02 2.65E+01 2.67E+01 

f9 
Best 2.09E+03 5.18E+03 7.68E+03 5.69E+03 6.20E+03 1.34E+03 1.00E+04 5.04E+03 5.13E+03 

Average 3.52E+03 8.85E+03 1.06E+04 8.59E+03 7.51E+03 4.46E+03 1.50E+04 9.25E+03 1.14E+04 
SD 8.96E+02 1.65E+03 1.05E+03 1.27E+03 1.11E+03 2.28E+03 2.48E+03 2.41E+03 2.35E+03 

f10 
Best 3.85E+03 7.34E+03 7.69E+03 6.28E+03 5.96E+03 4.44E+03 4.93E+03 8.60E+03 7.27E+03 

Average 5.14E+03 8.92E+03 8.70E+03 7.80E+03 7.37E+03 6.96E+03 6.21E+03 9.51E+03 8.12E+03 
SD 7.73E+02 3.96E+02 3.50E+02 5.80E+02 8.46E+02 1.44E+03 6.32E+02 5.11E+02 3.77E+02 

f11 
Best 1.19E+03 2.57E+03 3.56E+03 1.38E+03 2.27E+03 1.28E+03 1.35E+03 4.48E+03 3.24E+03 

Average 1.26E+03 4.22E+03 5.28E+03 2.19E+03 3.82E+03 1.38E+03 1.91E+03 1.18E+04 6.44E+03 
SD 3.23E+01 9.46E+02 1.11E+03 5.28E+02 9.31E+02 5.50E+01 9.17E+02 3.70E+03 2.16E+03 

f12 
Best 2.65E+06 8.42E+08 1.26E+09 2.31E+07 5.69E+07 5.42E+06 3.41E+05 3.42E+08 8.45E+08 

Average 1.38E+07 2.67E+09 3.88E+09 1.44E+08 4.57E+08 4.21E+07 4.20E+06 1.16E+09 1.47E+09 
SD 9.36E+06 1.02E+09 1.14E+09 7.19E+07 2.57E+08 3.56E+07 6.29E+06 6.36E+08 5.55E+08 

f13 
Best 1.23E+04 5.76E+08 5.87E+08 2.37E+05 1.68E+06 2.06E+05 1.98E+04 1.07E+07 1.64E+08 

Average 2.63E+04 1.37E+09 1.51E+09 2.17E+06 1.30E+07 2.08E+06 1.63E+07 3.46E+08 9.58E+08 
SD 1.45E+04 5.20E+08 6.76E+08 2.97E+06 1.02E+07 3.41E+06 3.52E+07 3.12E+08 4.91E+08 

f14 
Best 1.22E+04 1.44E+05 4.44E+05 6.09E+04 1.55E+05 7.65E+03 1.16E+04 9.30E+04 9.18E+03 

Average 2.27E+05 1.04E+06 1.25E+06 1.13E+06 2.21E+06 2.57E+05 2.11E+05 2.31E+06 7.30E+05 
SD 1.87E+05 7.10E+05 7.27E+05 9.47E+05 2.27E+06 2.61E+05 1.74E+05 1.78E+06 6.25E+05 

f15 
Best 7.28E+03 5.83E+06 6.36E+06 3.22E+04 3.87E+04 3.59E+04 2.71E+04 1.71E+05 2.51E+05 

Average 1.42E+04 4.39E+07 2.91E+07 2.87E+05 6.37E+06 2.18E+05 2.52E+05 1.12E+07 7.93E+07 
SD 3.59E+03 4.01E+07 2.41E+07 2.64E+05 7.07E+06 2.22E+05 3.27E+05 1.91E+07 5.37E+07 

f16 
Best 2.04E+03 3.93E+03 3.74E+03 2.70E+03 3.19E+03 2.14E+03 2.03E+03 3.95E+03 3.41E+03 

Average 2.84E+03 4.44E+03 4.23E+03 3.59E+03 4.33E+03 2.97E+03 3.25E+03 4.49E+03 4.03E+03 
SD 3.28E+02 2.10E+02 2.45E+02 4.91E+02 5.50E+02 3.48E+02 6.90E+02 2.90E+02 3.11E+02 

f17 
Best 1.83E+03 2.37E+03 2.29E+03 1.99E+03 2.24E+03 1.89E+03 1.79E+03 2.65E+03 2.40E+03 

Average 2.24E+03 2.91E+03 2.84E+03 2.47E+03 2.71E+03 2.33E+03 2.35E+03 3.00E+03 2.80E+03 
SD 2.22E+02 1.92E+02 1.61E+02 2.68E+02 3.23E+02 2.04E+02 3.89E+02 2.23E+02 2.05E+02 

f18 
Best 5.21E+04 3.98E+06 1.40E+06 4.82E+05 2.07E+05 1.49E+05 2.03E+05 5.71E+05 9.28E+05 

Average 6.11E+05 1.53E+07 1.25E+07 5.32E+06 1.03E+07 3.17E+06 2.24E+06 2.52E+07 8.03E+06 
SD 7.60E+05 7.94E+06 8.79E+06 5.31E+06 1.23E+07 2.56E+06 1.87E+06 1.52E+07 4.97E+06 

f19 
Best 1.53E+04 3.44E+07 1.28E+07 2.22E+05 4.04E+05 4.41E+04 2.97E+05 4.11E+05 2.52E+06 

Average 4.43E+05 1.12E+08 7.79E+07 1.64E+06 1.21E+07 1.01E+06 1.24E+06 2.28E+07 9.84E+07 
SD 3.45E+05 6.03E+07 5.14E+07 1.44E+06 1.41E+07 8.83E+05 1.00E+06 4.25E+07 8.57E+07 



30 
 

 

Table 10. Statistical results of the RUN and eight advanced optimizers on CEC-BC-2017 (Continued) 

  RUN CGSCA SCADE BMWOA BWOA OBLGWO CMAES GL25 CLPSO 

f20 
Best 2.27E+03 2.71E+03 2.65E+03 2.40E+03 2.44E+03 2.27E+03 2.53E+03 2.96E+03 2.63E+03 

Average 2.56E+03 2.95E+03 2.99E+03 2.76E+03 2.81E+03 2.62E+03 3.15E+03 3.26E+03 2.87E+03 
SD 1.70E+02 1.36E+02 1.52E+02 1.85E+02 1.94E+02 1.86E+02 3.46E+02 1.64E+02 9.18E+01 

f21 
Best 2.40E+03 2.57E+03 2.57E+03 2.49E+03 2.56E+03 2.42E+03 2.33E+03 2.57E+03 2.53E+03 

Average 2.44E+03 2.62E+03 2.62E+03 2.56E+03 2.64E+03 2.49E+03 2.59E+03 2.62E+03 2.60E+03 
SD 2.52E+01 2.45E+01 2.80E+01 4.40E+01 5.41E+01 5.34E+01 2.67E+02 2.59E+01 2.39E+01 

f22 
Best 2.30E+03 4.08E+03 4.96E+03 2.55E+03 3.49E+03 2.33E+03 6.23E+03 3.31E+03 4.30E+03 

Average 3.31E+03 5.39E+03 6.48E+03 5.68E+03 7.74E+03 3.33E+03 8.15E+03 5.31E+03 7.40E+03 
SD 1.86E+03 1.23E+03 1.08E+03 3.15E+03 1.86E+03 1.97E+03 1.32E+03 2.11E+03 1.83E+03 

f23 
Best 2.74E+03 3.02E+03 3.01E+03 2.87E+03 2.95E+03 2.76E+03 2.94E+03 2.99E+03 2.96E+03 

Average 2.80E+03 3.09E+03 3.09E+03 2.98E+03 3.19E+03 2.85E+03 4.22E+03 3.10E+03 3.09E+03 
SD 2.95E+01 3.74E+01 4.62E+01 7.05E+01 1.16E+02 5.76E+01 5.82E+02 6.85E+01 4.95E+01 

f24 
Best 2.90E+03 3.19E+03 3.18E+03 3.04E+03 3.07E+03 2.94E+03 3.07E+03 3.12E+03 3.09E+03 

Average 2.98E+03 3.25E+03 3.25E+03 3.13E+03 3.28E+03 2.99E+03 3.12E+03 3.24E+03 3.25E+03 
SD 4.61E+01 4.25E+01 3.36E+01 6.49E+01 9.54E+01 3.23E+01 2.04E+01 6.14E+01 4.78E+01 

f25 
Best 2.89E+03 3.30E+03 3.35E+03 2.99E+03 3.10E+03 2.90E+03 2.88E+03 3.34E+03 3.44E+03 

Average 2.93E+03 3.70E+03 3.81E+03 3.08E+03 3.20E+03 2.95E+03 2.89E+03 3.72E+03 3.77E+03 
SD 2.67E+01 2.36E+02 2.47E+02 5.70E+01 7.47E+01 2.82E+01 6.37E+00 2.51E+02 2.22E+02 

f26 
Best 2.80E+03 6.36E+03 7.36E+03 3.74E+03 4.71E+03 3.56E+03 2.80E+03 7.35E+03 6.52E+03 

Average 4.50E+03 8.02E+03 8.21E+03 6.82E+03 8.33E+03 5.73E+03 5.39E+03 8.47E+03 7.92E+03 
SD 1.27E+03 5.81E+02 3.96E+02 1.22E+03 1.12E+03 7.41E+02 1.84E+03 5.37E+02 5.68E+02 

f27 
Best 3.25E+03 3.41E+03 3.39E+03 3.25E+03 3.33E+03 3.22E+03 3.35E+03 3.51E+03 3.43E+03 

Average 3.31E+03 3.52E+03 3.57E+03 3.33E+03 3.47E+03 3.25E+03 3.51E+03 3.66E+03 3.58E+03 
SD 3.57E+01 6.53E+01 8.54E+01 6.37E+01 1.52E+02 1.57E+01 3.47E+02 1.01E+02 7.67E+01 

f28 
Best 3.23E+03 4.08E+03 4.48E+03 3.39E+03 3.50E+03 3.27E+03 3.19E+03 3.95E+03 4.25E+03 

Average 3.28E+03 4.76E+03 5.03E+03 3.50E+03 3.82E+03 3.35E+03 3.23E+03 4.88E+03 4.95E+03 
SD 2.06E+01 4.47E+02 3.53E+02 7.26E+01 2.00E+02 3.69E+01 3.00E+01 4.09E+02 4.03E+02 

f29 
Best 3.69E+03 4.67E+03 5.18E+03 4.25E+03 4.31E+03 3.84E+03 3.42E+03 4.91E+03 4.54E+03 

Average 4.24E+03 5.29E+03 5.67E+03 5.00E+03 5.45E+03 4.28E+03 3.76E+03 5.56E+03 5.13E+03 
SD 2.74E+02 3.17E+02 3.15E+02 5.16E+02 6.21E+02 3.41E+02 2.50E+02 3.28E+02 3.12E+02 

f30 
Best 3.55E+05 6.81E+07 6.71E+07 1.00E+06 6.87E+06 7.09E+05 7.94E+05 1.76E+07 1.74E+07 

Average 3.99E+06 2.19E+08 2.01E+08 8.83E+06 5.03E+07 6.50E+06 3.18E+06 5.03E+07 7.24E+07 
SD 2.71E+06 8.81E+07 8.13E+07 4.83E+06 4.07E+07 4.35E+06 2.42E+06 3.73E+07 4.27E+07 
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5.9. Sensitivity analysis of RUN 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 11 Average ranks of RUN and eight advanced optimizers 

based on the Friedman test 

Algorithm Friedman ranking Rank 

RUN 1.33 1 

CGSCA 6.53 7 

SCADE 7.40 9 

BMWOA 4.00 3 

BWOA 5.70 5 

OBLGWO 2.23 2 

CMAES 4.43 4 

GL25 7.17 8 

CLPSO 6.20 6 
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Fig. 8. Convergence graphs of RUN and eight other algorithms for the selected CEC 2017 

benchmark functions 
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The sensitivity analysis of the control parameters of RUN (i.e., a and b) was 

performed, which demonstrated that RUN had a very low sensitivity to the parameter 

changes. This research evaluated different combinations of the control parameters on 

34 mathematical test functions for designing RUN, including two groups, 14 unimodal 

and multimodal test functions (group 1) and 20 test functions of CEC-BC-2017 (group  

2). In this regard, the values of each parameter were defined as a = [5, 10, 20, 

30, 40] and b = [4, 8, 12, 16, 20]. Since each parameter had 5 values, there were 25 

combinations of the design parameters. Each combination was evaluated by the 

average fitness values obtained from 30 different runs. Fig. 9(a) illustrates the mean 

rank values of the two groups, and Fig. 9(b) presents the average rank values of the two 

groups. Accordingly, the best rank belongs to C13 (a = 20 and b = 12), and the rank of 

C19 is very close to C13. Also, the ranks for most combinations are very close, 

indicating that the proposed algorithm is not very sensitive to the parameter changes.  
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Fig. 9. Sensitivity analysis of RUN, (a) ranks of uni- and multi-modal test functions 

and CEC-2017 (b) average ranks of all combinations 

 

6. Engineering benchmark problems 

Four engineering benchmark problems were selected in this study to evaluate 

the performance of the proposed RUN algorithm. Solving such engineering design 

problems by utilizing specific optimization algorithms is a suitable way to test their 

capabilities (Heidari, Mirjalili, et al., 2019). The results obtained by RUN were 

compared with those of different well-known optimizers suggested in previous studies. 

It is worth noting that the population size and the maximum number of iterations were 

30 and 500, respectively, for all problems.   
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6.1. Rolling element bearing design problem 

The primary goal of this problem is to maximize the fatigue life, which is a 

function of the dynamic load-carrying capacity. It has ten variables and nine constraints 

for modeling and geometric-based limitations. The problem is described in detail by 

Gupta et al. (2007). The problem is described in detail in (Gupta, et al., 2007). The 

related mathematical formulation is detailed in Appendix A.  

Fig. 10 displays the schematic view of the rolling element bearing design 

problem.  

 

Fig. 10. Rolling element bearing design problem 

The results of RUN were compared with those of the GA (Gupta, et al., 2007), 

teaching-learning-based optimization (TLBO) (Rao, et al., 2011), passing vehicle search 

(PVS) (Savsani & Savsani, 2016), and HHO (Heidari, Mirjalili, et al., 2019) algorithms. 

Table 12 presents the statistical results from RUN, GA, TLBO, PVS, and HHO 

optimizers, indicating that RUN achieved the best fitness value with significant 

progress. The optimal variables of the problem for the five optimizers are shown in 

Table 13. 

Table 12. Statistical results from RUN, TLBO, GA, PVS, and HHO for the rolling element 
bearing design problem 

 RUN GA (Gupta, et al., 

2007) 
TLBO (Rao, et 

al., 2011) 
PVS (Savsani & 

Savsani, 2016) 

HHO (Heidari, 

Mirjalili, et al., 
2019) 

Best 83680.47 81843.30 81859.74 81859.59 83011.88 

Mean 82025.24 NA* 81438.99 80803.57 NA 

SD 977.95 NA NA NA NA 

*NA: Not Available 

 

𝐷ℎ 
𝐵𝑤 

D 

𝑑  

𝑑  

𝑟  
𝑟𝑖 
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6.2. Speed reducer design problem 

   In this problem, the weight of speed reducer is maximized (Mezura-Montes & 

Coello, 2005). The mathematical formulation of this problem is detailed in Appendix 

A. The numbers of variables and constraints of this problem were 7 and 11, 

respectively, and the schematic is depicted in Fig. 11. 

 

 
Fig. 11. Speed reducer design problem 

 

 

RUN's optimal results were compared with the CS results (Gandomi, et al., 

2013), HGSO (Hashim, et al., 2019), GWO, and WOA optimizers. Table 14 gives the 

results of these optimization algorithms for this problem. It can be observed that RUN 

achieved the best solution and outperformed the compared optimizers. In addition, the 

optimal variables of the problem are tabulated in Table 15. 

Table 13.  Comparison of the results from RUN, TLBO, GA, PVS, and HHO for the rolling element 
bearing design problem 

Variables RUN TLBO (Rao, et al., 

2011) 
GA (Gupta, et al., 

2007) 
PVS (Savsani & 

Savsani, 2016) 

HHO 
(Heidari, 

Mirjalili, et al., 
2019) 

   21.59796 21.42559 21.42300 21.42559 21.0000 

   125.2142 125.7191 125.71710 125.71906 125.0000 

   0.51500 0.51500 0.51500 0.51500 0.51500 

   0.51500 0.51500 0.51500 0.51500 0.51500 

  11.4024 11.0000 11.0000 11.0000 11.0920 

      0.40059 0.42426 0.41590 0.40043 0.4000 

      0.61467 0.63394 0.65100 0.68016 0.6000 

  0.30530 0.30000 0.30004 0.30000 0.3000 

  0.02000 0.06885 0.02230 0.07999 0.0504 

  0.63665 0.79994 0.75100 0.70000 0.6000 

𝑥  𝑥  

𝑥  

𝑥  
𝑥  𝑥  

𝑥  
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Table 15. Comparison of the results from RUN, CS, HGSO, GWO, and WOA 
for the speed reducer design problem 

Variables RKO CS (Gandomi, 

et al., 2013) 

HGSO 
(Hashim, et al., 

2019) 

GWO 
(Hashim, et al., 

2019) 

WOA 
(Hashim, et 

al., 2019) 

   3.5001 3.5015 3.4970 3.5000 3.4210 

   0.7000 0.7000 0.7100 0.7000 0.7000 

   17.000 17.000 17.020 17.000 17.000 

   7.0000 7.6050 7.6700 7.3000 7.3000 

   7.8000 7.8181 7.8100 7.8000 7.8000 

   3.3500 3.3520 3.3600 2.9000 2.9000 

   5.2900 5.2875 5.2850 2.9000 5.0000 

Fitness 2996.73 3000.98 2997.10 2998.83 2998.40 

 

 

6.3. Three-bar truss problem  

The objective of this problem is to minimize the weight of a three-bar truss 

(Cheng & Prayogo, 2014; Gandomi, et al., 2013), which is one of the widely-used 

engineering problems in previous studies. Fig. 12 displays this problem's shape, in 

which the main variables include the areas of bars 1, 2, and 3. The mathematical 

formulation (i.e., objective function and constraints) of the problem is detailed in 

Appendix A.  

Table 14.  Statistical results from RUN, CS, HGSO, GWO, and WOA for the speed 
reducer design problem 

 RKO 
CS (Gandomi, 

et al., 2013) 

HGSO 
(Hashim, et al., 

2019) 

GWO 
(Hashim, et al., 

2019) 

WOA 
(Hashim, et al., 

2019) 

Best 2996.348 NA 2996.4 2998.545 2998.134 

Mean 2996.348 3007.2 2996.9 2998.832 2998.445 

SD 7.63E-09 4.96E+00 4.39E-05 1.86E-06 1.94E-06 
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Fig. 12. Three-bar truss problem 

The results of RUN were compared with those of MVO (Mirjalili, et al., 2016), 

grasshopper optimization algorithm (GOA) (Mirjalili, et al., 2018), moth-flame 

optimization (MFO) (Mirjalili, 2015b), mine blast algorithm (MBA) (Sadollah, et al., 

2013), CS (Gandomi, et al., 2013), and HHO (Heidari, Mirjalili, et al., 2019). Table 16 

displays the results acquired from RUN and the six other optimizers, revealing that the 

proposed RUN yielded better results than the other optimizers. Furthermore, the 

optimized variables obtained by the seven optimization algorithms are shown in Table 

17.  

 

 

 

Table 16. Comparison of statistical results of RUN with literature for the three-bar truss 
problem    

 RUN 
MVO (S. 

Mirjalili, et 
al., 2016) 

GOA (S. 

Z. Mirjalili, 
et al., 2018) 

MFO (S. 

Mirjalili, 
2015b) 

MBA 
(Sadollah, 

Bahreininejad, 
Eskandar, & 
Hamdi, 2013) 

CS 
(Gandomi, 
et al., 2013) 

HHO 
(Heidari, 

Mirjalili, et 
al., 2019) 

Best 263.8958 263.8958 263.8958 263.8955 263.8958 263.9715 263.8958 

Mean 263.89768 NA NA NA 263.897996 264.0669 NA 

SD 2.30E-03 NA NA NA 3.93E-03 9.00E-05 NA 

𝑙 

2 3 

4 

A1=A3 

P P 

𝑥𝐴  

𝑥𝐴  

𝑥𝐴  𝑙 

1 
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Table 17.  Best solutions achieved by the seven algorithms for the 

three-bar truss problem    

Algorithm       

RKO 0.788679110 0.408237045 

MVO (S. Mirjalili, et al., 2016) 0.78860276 0.408453070 

GOA (S. Z. Mirjalili, et al., 

2018) 
0.78889755 0.40761957 

MFO (S. Mirjalili, 2015b) 0.78824477 0.40946690 

MBA (Sadollah, 

Bahreininejad, Eskandar, & 

Hamdi, 2013) 
0.7885650 0.4085597 

CS (Gandomi, et al., 2013) 0.78867 0.40902 

HHO (Heidari, Mirjalili, et al., 

2019) 
0.7886628 0.4082313 
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6.4. Cantilever beam problem 

Fig. 13 depicts the five-stepped cantilever beam problem, for which the main 

variables are the height and width of the beam [63]. The main goal of the problem is to 

minimize the beam weight. The main formulation of the problem is defined in 

Appendix A. 

 

Fig. 13. Cantilever beam problem 

 

The RUN optimized the problem, and its results were compared with those of 

CS (Gandomi, et al., 2013), method of moving asymptotes (MMA) (Chickermane & 

Gea, 1996), generalized convex approximation (GCA I) (Chickermane & Gea, 1996), 

GCA II (Chickermane & Gea, 1996), and SOS (Cheng & Prayogo, 2014). As shown in 

Table 18, RUN provided more promising results than the five other optimizers, which 

confirmed the RUN algorithm's high efficiency in approximating the global best 

solution for this problem. Also, the optimal variables calculated by all the six optimizers 

are listed in Table 19. 

 

 

Table 18.  Statistical results of RUN, CS, SOS, MMA, GCA I, and GCA II for the 
cantilever beam problem    

 RUN 
CS 

(Gandomi, 
et al., 2013) 

SOS 
(Cheng & 
Prayogo, 

2014) 

MMA 
(Chickermane 
& Gea, 1996) 

GCA I 
(Chickermane 
& Gea, 1996) 

GCA II 
(Chickermane 
& Gea, 1996) 

Best 1.3399563 1.33999 1.33996 1.34000 1.34000 1.34000 

Mean 1.3399604 NA 1.33997 NA NA NA 

SD 4.68E-06 NA 1.10E-05 NA NA NA 

1 2 3 4 5 
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7. Conclusions and future directions 

In this study, a novel metaheuristic optimization algorithm, RUN was 

developed to solve various optimization problems. The RUN algorithm was inspired by 

the RK method used as a search engine to explore the best solution in the search space. 

The RUN algorithm's search mechanism was formulated to effectively implement and 

balance the exploration and exploitation phases. Also, the enhanced solution quality 

(ESQ) was proposed and incorporated into RUN to improve the quality of solutions, 

escape from local optima, and increase the convergence speed. 20 test functions, 

including unimodal, multimodal, and hybrid, were utilized to assess the efficiency of the 

RUN algorithm.  

The RUN's superior efficiency on the unimodal and multimodal test functions 

demonstrated its excellent exploitation and exploration abilities, which can be 

attributed to utilizing the local and global terms in the RUN search mechanism and the 

ESQ operator. Moreover, the optimal results for the hybrid and composite test 

functions showed that RUN effectively facilitated the transition from global search (i.e., 

exploration) to local search (i.e., exploitation) by utilizing the adaptive parameters. The 

results from this study indicated that RUN was able to explore wondrous solutions 

compared with other state-of-the-art optimizers. 

To evaluate the efficiencies of the RUN algorithm, comparisons were made 

with five other optimizers (i.e., GWO, WOA, CS, WCA, and IWO) using two well-

Table 19.  Optimal variables obtained by the RUN, CS, SOS, MMA, GCA 

I, and GCA II algorithms for the cantilever beam problem   

Algorithm                

RKO 6.0049 5.3190 4.4868 3.5033 2.1595 

CS (Gandomi, et 

al., 2013) 
6.0089 5.3049 4.5023 3.5077 2.1504 

SOS (Cheng & 

Prayogo, 2014) 
6.0187 5.3034 4.4958 3.4989 2.1556 

MMA 
(Chickermane & 

Gea, 1996) 
6.0100 5.3000 4.4900 3.4900 2.1500 

GCA I 
(Chickermane & 

Gea, 1996) 
6.0100 5.3040 4.4900 3.4980 2.1500 

GCA II 
(Chickermane & 

Gea, 1996) 
6.0100 5.3000 4.4900 3.4900 2.1500 
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known ranking tests (i.e., the Friedman and Quade tests). The findings revealed that 

RUN provided very competitive results and outperformed the other optimizers for 

most test functions.  

In addition, the efficiency of RUN algorithm was assessed by utilizing the 

CEC2017 test functions and was compared with eight advanced algorithms. The results 

demonstrate that RUN can guarantee the efficiency of global search while obtaining 

superior local search, thus retaining an excellent balance between local and global 

search capabilities, which indicates the superior efficiency of the proposed optimizer in 

comparison with the advanced optimizers. Moreover, RUN was compared with other 

existing optimizers in solving four engineering design problems, showing that RUN 

presented a better performance in optimizing these complex real-world problems than 

the other optimization algorithms.   

This study was intended to develop a new optimizer (i.e., RUN) to be 

implemented and formulated with specific exploration and exploitation strategies. 

Despite the promising findings, it is recommended for future studies to use other well-

known operators, such as the crossover operator, mutation operator, opposite-based 

learning method, and levy walks (LWs). A chaotic map (CMs) should also be 

considered when the EQS is used in each iteration. In addition, further improvement 

can be made by developing the multiobjective and binary versions of RUN for solving 

multiobjective and discrete optimization problems. Finally, other RK methods, such as 

the fourth-order RK contraharmonic mean method, can be considered in the RUN 

algorithm to enhance its efficiency.  
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Appendix A 

I- Rolling element bearing design problem 
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II- Speed reducer problem 
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III- Three-bar truss problem 
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IV- Cantilever beam problem 
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